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Abstract

This study is carried out to observe the fluid flow across a stratified sheet in the

presence of non-linear thermal radiation. Through the process of similarity trans-

formations, the partial differential equations (PDEs) governing the flow model are

transformed into ordinary differential equations (ODEs). The shooting method is

then used to numerically solve the reduced equations. In this thesis, it is investi-

gated how various flow parameters, such as the magnetic parameter, the Prandtl

number, the Brownian motion parameter, the inertial cofficient, the radiation pa-

rameter, the thermophoresis parameter and the Brinkman number affect the skin

friction coefficient, the Nusselt number, the Sherwood number and the rate of en-

tropy generation. The MATLAB software is utilized to construst the tables and

graphs which illustrate the numerical results. It has been found that the Cattaneo-

Christov temperature parameter, is reduced, the temperature profile falls and the

concentration profile rises. Similarly, as the Cattaneo-Christov concentration pa-

rameter is reduced, the temperature distribution rises while the concentration

distribution declines. Furthermore, as the Weissenburg number’s values climb,

the rate of entropy generation rises as well. Numerous industries including so-

lar engineering, polymer extrusion, electronic components, and biomedicine, can

benefit from this kind of research.
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Chapter 1

Introduction and Literature

Review

A phase of matter known as a fluid deforms or flows in response to an applied

external force. There are three types of fluid: liquids, gases, and plasma [1]. It is

a substance with vanishing shear modulus or put another way, a substance that

is incapable of withstanding any applied shear force. Since fluid is a necessity for

daily life and plays a crucial role in many natural processes, experts from all over

the world are working to uncover interesting information about fluid movement.

The branch of fluid mechanics known as fluid dynamics in which we analyse fluid

flow while simultaneously examining its causes, as well as how forces affect fluid

movement. It offers strategies for comprehending the evolution of the stars, the

ocean, the current, the tectonic plate, and the blood flow [2]. Wind turbines,

oil pipelines, rocket engines, and air conditioning systems are only a few signif-

icant applications of fluid fluxes [3]. The Archimedes principle, which is related

to the motion of objects, was first developed by Archimedes. Fluid dynamics

foundational principle is the static behaviour of fluids. Fluid mechanics has been

properly studied since the early fifteenth century. Depending on the relation-

ship between two physical parameters, namely the relationship between stress and

strain, fluid can be further characterised as Newtonian or non-Newtonian fluid.

Non-Newtonian fluids are those that do not exhibit a linear correlation between

1
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the shear stress and the rate of deformation. In other words, fluids that defy New-

ton’s viscosity law are referred to as non-Newtonian fluids. Ketchup, paint, and

blood, Shampoo, mud, and other liquids exhibit non-Newtonian behaviour. One

of the most widely used fluids that are not Newtonian are called Williamson fluids.

Williamson fluids have a wide range of applications in many areas of science, tech-

nology, and engineering, including material processing, the nuclear and chemical

industries, bio-engineering, and geophysics. A wide variety of mathematical mod-

els have been created to simulate the flow behaviour of these non-Newtonian fluids

in the light of these applications. A variety of industries, including oil recovery,

filtration, polymer engineering, ceramic production, and petroleum production,

use non-Newtonian fluid. Additionally, it plays a crucial part in the design of

solid matrix, heat geothermal energy production, the removal of nuclear waste,

and petroleum reservoirs, among other things [4]. Williamson [5] talked on the

flow of pseudoplastic materials, developed a model equation to talk about the flow

of pseudoplastic fluids, and then experimentally confirmed the findings. In their

presentation of the Williamson fluid flow across a stretched surface, Nadeem et

al. [6] observed that the dimensionless velocity falls as the values of the Williamson

fluid parameter increases.

Choi [7] initially used the term nanofluid to describe a new form of fluid. Nanofluid

is a blend of conventional low thermal conductivity fluid with nanoparticles with

a size smaller than 100 nm. It can also be defined as “the tinny size particles

suspended in a base fluid are known as nanofluids”. The most popular nanopar-

ticles in use today are carbon nanotubes, carbides, metals, oxides nanofluids etc.

These fluids are created synthetically to have better thermal conductivity than

any basic fluids. Nanofluids’ thermal conductivity can be boosted by adding gold,

copper, silver, and other nanoparticles to the base fluid. Buongiorno [8] studied

the element that increased the thermal conductivity of nanofluids. He noticed that

a change in the fluid’s thermal conductivity is caused by both the thermophore-

sis effect and Brownian motion. In the heavy vehicle and information technology
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industries, nanofluids can also be utilised as a coolant. In many industrial, biomed-

ical, and technical domains, nanofluid is a blessing. Ibrahim and Shankar [9] used

the slip boundary condition, heat radiation, and magnetic field effect to study the

boundary layer flow of a non-Newtonian nanofluid. Using slip velocity and surface

boundary conditions, Abolbashari et al. [10] examined the transmission of energy

and heat in the steady laminar Casson nanofluid flow. The impact of thermal

radiation on MHD nanofluid on a stretched surface was examined by Naramgari

and Soluchana [11]. Krishnamurthy et al. [12] explored the numerical study of

Williamson nanofluid flow through a permeable surface coupled with the impact

of chemical parameter in theopresence of nanoparticles. A porous nonolinear sheet

was used by Ghadikolaei et al. [13] to explore the effects of several physical param-

eters on the MHD flow of Casson nanofluid, including chemical reaction, thermal

radiation, suction, Joule heating, heat generation, and absorption. Shahzad et

al. [14] used the Joule heating effect to study the nanofluid flow along a horizontal

sheet in the presence of an external magnetic field.

The field of mechanics known as magnetohydrodynamics studies conduction fluid

flow in the presence of an external magnetic field. The MHD fluid was first in-

troduced by Swedish physicist Alfen [15]. The petroleum industry, MHD power

generators, crystal formation, etc. are just a few engineering scenarios where MHD

fluid flow through a heated surface has numerous critical applications. By assum-

ing various physical parameters, Attia [16] investigated the heat transfer using

MHD Couette flow in a special kind of fluid termed as dusty fluid and discovered

that both the temperature of the fluid and the dust particles fluctuate consider-

ably. The MHD natural convection flow of spinning fluid through a porous sheet

was studied by Mbeledogu and Ogulu [17]. They also studied the effects of ra-

diation and heat transport. Through MHD, the boundary layer structure can be

altered, improving fluid flow in a particular direction. Several industrial opera-

tions, such as the production of materials and metal casting, depend heavily on the

application of an external magnetic field. Chauhan and Agrawal [18] conducted
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an analysis of the MHD flow and heat transfer across a channel employing a per-

meable sheet. They discovered that two variables, such as the magneticonumber

and suction parameter, can control the coolingorate. They discovered that the

magneticonumber and the suctionoparameter, respectively, can control the rate of

cooling. Zhang et al. [19] conductedoan analysis of the heatotransfer in 2D MHD

fluid flow utilising a permeable surfaceowith rapid slip velocity and temperature

gradient changes. They noticed that by changing the system’s shrinking parame-

ter, the thermal boundary layer could be increased. Yazdi et al. [20] used a vertical

plate filled with nanofluid to illustrate the 2D mixed convection MHD boundary

layer stagnation point flow in the presence of thermal radiation. The most frequent

types of magnetic fluid are plasma, liquid metals, salt water, and electrolytes. It

establishes a link between the Navier-Stoke equation for fluid dynamics and the

Maxwell equations for electromagnetism. The basic idea behind MHD is that

when an external magnetic field produces an electric current in a conducting fluid,

force is applied to the flowing fluid, which in turn influences the magnetic field.

Due to MHD’s significance, it is important in many flow phenomena. It has a

wide range of applications in many scientific disciplines, including metallurgical

science, mental processing, aerodynamics, fluid dynamics, and several engineering

disciplines, such as ceramic and biomedical engineering, among others [21].

The inability of the system to fully utilize the available energy is known as entropy.

Heat transfer irreversibility, fluid friction and mass transfer irreversibility are the

main causes of a rise in a system’s entropy. The overall entropy of the system

is defined as the sum of these three variables. The importance of irreversible el-

ements related to heat transfer, friction, and other imperfect processes within a

system is highlighted by entropy formation. The amount of entropy produced dur-

ing a specific task can be used to predict the quantity of energy wasted. Entropy

increases over time and this process is irreversible. According to the second law

of thermodynamics, entropy generally develops in a variety of systems, especially,

those involving fluid viscous force, flow-driven force, Joule heating, and thermal

management since heat transfer is irreversible in these systems.
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The technical and scientific communities have already begun to take entropy gener-

ation seriously. In the past, various fluid models have been used for entropy gener-

ation analysis. To reduce entropy generation, different liquid models are taken into

account for specific systems. Numerous scholars have conducted numerical inves-

tigations on the entropyogeneration in convectiveoheat transfer situations. Abu-

Hijleh et al. investigated numerical prediction of entropy generation owing to nat-

ural convection from a horizontal cylinder in their study [22]. In a different study,

Abu-Nada [23] discusses numerical predictionoof entropy generation inoseparated

flows. Abu-Nada researched the creation of entropy resulting from heat and

fluid flow in a backward facing step flow with different expansion ratios [24].

The primary objectives of thisostudy are to examine the impact of Cattaneo-

Christovodouble diffusion, multipleoslips, and Darcy-Forchheimeroon entropy op-

timisedoand thermally radiativeoflow, thermal andomass transport ofohybrid nano-

liquids pastoa stretched cylinderosubject to viscousodissipation, andoArrhenius

activation energy. Chen et al. [25] claim that the primary reason entropy forms in

low Reynolds number situations is because chemical reactions become irreversible.

Models of non-Newtonian fluids are more suitable for simulating the behaviour

of nanofluids. Ellahi et al. [26] utilised OHAM to apply the Brinkman nanofluid

model to discover the precise solution of the Power-law nanofluid with copper

nanoparticles. They discovered that raising the nanoparticle volume fraction

causes a decrease in the velocity profile of fluids that are shear thinning. Pakdemirli

and Yilbas take into account the non-Newtonian fluid flow in a pipe system with

entropy formation. They claim that as the Brinkman number rises, the entropy

number does as well [27]. Using the finite volume approach and the SIMPLE

algorithm, Govone et al. [28] examined the heat transfer and entropy generation

of Al2O3-water nanofluidoflow through isotropicoporous media made up of stag-

geredoand in-line arrangementsoof square pillars. According to their findings, for

both arrangements, the entropy generation is reduced as the volume fraction of

solid nanoparticles increases. In their research [29], Afridi and Qasim examined

how the creation of entropy affected the heat transfer and radiative flow via a thin
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moving needle. Viscose dissipation and nonlinear radiative heat flux help to solve

the flow problems. Utilizing viscous dissipation and nonlinear radiative heat flow,

the properties of heat transmission are studied. Entropy production in the Darcy-

Forchheimerotransport ofohybrid nanofluidsowith Cattaneo-Christovodouble dif-

fusion is computed numerically [30]. According to [31], [32] and [33], similar inves-

tigation of entropy generation on nanofluid with stretching surface taking different

geometries is conducted. In Qing et al. study [34], entropy analysis was done on

a Casson nanofluid flow that was travelling through a permeable stretching sur-

face. Using the numerical successive linearization method, they discovered that

an increase in the permeability parameter, Reynolds, Brinkman, and Hartmann

numbers results in an increase in the creation of entropy. Williamson nanoliquid

flow that is chemically reactive was studied by Hayat et al. [35] with mixed con-

vection. They made use of thermophoresis and Brownian motion. A bidirectional

stretched surface with constant thickness is used to analyse flow. The optimal

homotopy analysis method is used. Temperature and concentration exhibit op-

posing behaviour thanks to a bigger Brownian parameter. Khan et al. described

the entropy production and activation energy (AE) components for NF in their

paper [36].

1.1 Contribution to the Thesis

In this assessment, a review study of [37] has been presented and then the flow

analysis has been extended with Cattaneo-Christov Double Diffusion Model. Pre-

viously, Bilal et al. [37] extended the work of [38] by considering non-Darcian MHD

Williamson nanofluid in the presence of non-linear thermal radiation across a strat-

ified sheet. First of all, the governing PDEs are converted into the dimentionless

ODEs by using the suitable similarity transformations. The MATLAB software is

utilized to construst the tables and graphs which illustrate the numerical results.

The key findings using CCDDM in our flow model are provided through complete

discussions and elaboration. Using the shooting technique, numerical results are

generated for the collection of nonlinear coupled ODEs.
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1.2 Thesis Outline

The information below gives a quick summary of the thesis contents.

Chapter 2 includes the definitions of a number of fundamental terms, solution

methods, guiding concepts, and dimensionless parameters that will be used in later

part of this thesis.

Chapter 3 gives a review of “The Non-Darcian MHD Williamson nanofluid

entropy optimization across a stratified sheet”. The shooting method is used to

regenerate the numerical outcomes of the governing flow equations.

Chapter 4 is focused on an extension of model reviewed in Chapter 3.

Chapter 5 includes the concluding remarks of the thesis.

In the Bibliography, the relevant references for this thesis are listed.



Chapter 2

Some Basic Terminologies and

Method of Solution

The following chapters will make use of several fundamental terminologies, guiding

principles and dimensionless parameters that have been defined in this chapter.

The numerical computations of the flow problem discussed in the thesis are carrried

out by using the shooting method, which is also covered at the end of the chapter.

2.1 Some Basic Terminologies

Definition 2.1.1 [Fluid]

“A fluid is a substance that deforms continuously under the application of a shear

(tangential) stress no matter how small the shear stress may be.” [39]

Definition 2.1.2 [Fluid Mechanics]

“Fluid mechanics is that branch of science which deals with the behaviour of the

fluids (liquids or gases) at rest as well as in motion. Thus this branch of science

deals with the static, kinematics and dynamic aspects of the fluids.” [40]

Definition 2.1.3 [Fluid Dynamics]

“The term fluid dynamics encompasses the study of the laws of conservation of

mass, momentum and energy as they apply to the flow of fluid.” [41]

8
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Definition 2.1.4 [Fluid Statics]

“The study of fluid at rest is called fluid statics.” [40]

Definition 2.1.5 [Viscosity]

“Viscosity is defined as the property of a fluid which offers resistance to the move-

ment of one layer of fluid over another adjacent layer of the fluid. Mathematically,

µ =
τ
∂u
∂y

,

where µ is viscosity coefficient, τ is shear stress and ∂u
∂y

represents the velocity

gradient.” [40]

Definition 2.1.6 [Kinematic Viscosity]

“The ratio of dynamic viscosity to density is called kinematic viscosity. It is

denoted by the Greek symbol ν called nu. Mathematically, it can be expressed as,

ν =
viscosity

density
=
µ

ρ
. (2.1)

SI unit of Kinematic Viscosity = m2s−1.” [42]

Definition 2.1.7 [Dynamic Viscosity]

“The extent which measures the resistence of fluid tending to cause the fluid to

flow is called dynamic viscosity, also known as absolute viscosity. This resistence

arises from the attractive forces between the molecules of fluid. Usually liquids and

gases have non zero viscosity. It is denoted by the symbol µ and mathematically

it can be written as

µ =
Shear stress

Shear strain
.′′ [42]

Definition 2.1.8 [Thermal Conductivity]

“The Fourier heat conduction law states that the heat flow is proportional to the

temperature gradient. The coefficient of proportionality is a material parameter

known as the thermal conductivity which may be a function of a number of vari-

ables.” [43]

Definition 2.1.9 [Thermal Diffusivity]

“The rate at which heat diffuses by conducting through a material depends on the
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thermal diffusivity and can be defined as,

α =
k

ρCp
,

where α is the thermal diffusivity, k is the thermal conductivity, ρ is the density

and Cp is the specifc heat at constant pressure.” [44]

Definition 2.1.10 [Magnetohydrodynamics]

“Magnetohydrodynamics (MHD) is concerned with the mutual interaction of fluid

flow and magnetic fields. The fluids in question must be electrically conducting

and non-magnetic, which limits us to liquid metals, hot ionised gases (plasmas)

and strong electrolytes.” [45]

Definition 2.1.11 [Entropy]

“The entropy of a system is the amount of thermal energy per unit of temperature

that cannot be used to carry out beneficial work. Every system is capable of

producing useful energy. However, some energy is lost in the form of heat during

this beneficial work as a result of friction and other factors. The term ”entropy of

the system” refers to this energy loss.” [46]

2.2 Classification of Fluid

Definition 2.2.1 [Ideal Fluid]

“A fluid, which is incompressible and has no viscosity, is known as an ideal fluid.

Ideal fluid is only an imaginary fluid as all the fluids, which exist, have some vis-

cosity” [40]

Definition 2.2.2 [Real Fluid]

“A fluid, which possesses viscosity, is known as a real fluid. In actual practice, all

the fluids are real fluids.” [40]

Definition 2.2.3 [Newtonian Fluid]

“Fluids for which the shearing stress is linearly related to the rate of shearing

strain are called newtonian fluids.” [47]
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Definition 2.2.4 [Non-Newtonian Fluid]

“Fluids for which the shearing stress is not linearly related to the rate of shearing

strain are called newtonian fluids.

τxy ∝
(
du

dy

)m
, m 6= 1

τxy = k

(
du

dy

)m
,

where k = Flow consistency coefficient,
du

dy
= Shear rate, and m = Flow behaviour

index.” [47]

Definition 2.2.5 [Ideal Plastic Fluid]

“A fluid in which the shear stress is more than the yield value and shear stress is

directly proportional to the rate of shear strain (or velocity gradient), is known as

ideal plastic fluid.” [40]

Definition 2.2.6 [Nanofluids]

“Nanofluids are engineered colloids made of a base fluid and nanoparticles. Nanoflu-

ids have higher thermal conductivity and single phase heat transfer coefficients

than their base fluids metals, oxides, carbides, or carbon nanotubes are the typi-

cal nanoparticles which are used in nanofluids and oil, ethylene glycol and water

are examples of common base fluids.” [40]

Definition 2.2.7 [Magnetohydrodynamics]

“Magnetohydrodynamics (MHD) is concerned with the mutual interaction of fluid

flow and magnetic fields. The fluids in question must be electrically conducting

and non-magnetic, which limits us to liquid metals, hot ionised gases (plasmas)

and strong electrolytes.” [48]

2.3 Types of Flow

Definition 2.3.1 [Laminar Flow]

“The highly ordered fluid motion characterzed by smooth layers of fluid is called

laminar flow. The flow of high-viscosity fluids such as oil at low velocity is typically
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laminar.” [42]

Definition 2.3.2 [Turbulent Flow]

“The highly disordered fluid motion that typically occurs at high velocities and

is characterized by velocity fluctuations is called turbulent flow. The flow of low-

viscosity fluids such as air at high velocity is typically turbulent.” [42]

Definition 2.3.3 [Rotational Flow]

“Rotational flow is that type of flow in which the fluid particles while flowing along

stream-lines, also rotate about their own axis.” [40]

Definition 2.3.4 [Irrotational Flow]

“Irrotational flow is that type of flow in which the fluid particles while flowing

along stream-lines, do not rotate about their own axis then this type of flow is

called irrotational flow.” [40]

Definition 2.3.5 [Compressible Flow]

“Compressible flow is that type of flow in which the density of the fluid changes

from point to point or in other words the density (ρ) is not constant for the fluid,

Mathematically,

ρ 6= k,

where k is constant.” [40]

Definition 2.3.6 [Incompressible Flow]

“Incompressible flow is that type of flow in which the density is constant for the

fluid. Liquids are generally incompressible while gases are compressible, Mathe-

matically,

ρ = k,

where k is constant.” [40]

Definition 2.3.7 [Internal Flow]

“The flow in a pipe or duct is internal flow if the fluid is completely bounded by

solid surfaces. Water flow in a pipe, for example, is internal flow.” [42]

Definition 2.3.8 [External Flow]

“The flow of an unbounded fluid over a surface such as a plate, a wire, or a pipe

is external flow. Airflow over a ball or over an exposed pipe during a windy day

is external flow.” [42]
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Definition 2.3.9 [Steady Flow]

“If the flow characteristics such as depth of flow, velocity of flow, rate of flow at

any point in open channel flow do not change with respect to time, the flow is said

to be steady flow. Mathematically,

∂Q

∂t
= 0,

where Q is any fluid property.” [40]

Definition 2.3.10 [Unsteady Flow]

“If at any point in open channel flow, the velocity of flow, depth of flow or rate of

flow changes with respect to time, the flow is said to be unsteady. Mathematically,

∂Q

∂t
6= 0,

where Q is any fluid property.” [40]

2.4 Modes of Heat Transfer

Definition 2.4.1 [Heat Transfer]

“Heat transfer is a branch of engineering that deals with the transfer of thermal

energy from one point to another within a medium or from one medium to another

due to the occurrence of a temperature difference.” [49]

Definition 2.4.2 [Conduction]

“The conduction mode of heat transport occurs either because of an exchange of

energy from one molecule to another, without the actual motion of the molecules

or because of the motion of the free electrones if they are present. Therefore, this

form of heat transport depends heavily on the properties of the medium and takes

place in solids, liquids and gases if a difference in temperature exists.” [50]

Definition 2.4.3 [Convection]

“The transfer of heat from one region to another due to macroscopic motion of

molecules in a liquid or gas, added to the energy transfer by conduction within
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the fluid, is called heat transfer by convection. Convection may be free, force or

mixed.” [50]

Definition 2.4.4 [Thermal Radiation]

“Thermal radiation is defined as radiant (electromagnetic) energy emitted by a

medium and is solely to the temperature of the medium.” [47]

2.5 Dimensionless Numbers

Definition 2.5.1 [Eckert Number]

“It is the dimensionless number used in continuum mechanics. It describes the

relation between flows and the boundary layer enthalpy difference and it is used

for characterized heat dissipation. Mathematically,

Ec =
u2

Cp∇T

where u is an appropriate fluid velocity, Cp denotes the specific heat and δT , the

temperature difference is the driving force for heat transfer.” [39]

Definition 2.5.2 [Prandtl Number]

“It is the ratio between the momentum diffusivity ν and thermal diffusivity α.

Mathematically, it can be defined as

Pr =
ν

α
=

µ
ρ

k
Cpρ

=
µCp
k

where µ represents the dynamic viscosity, Cp denotes the specific heat and k

stands for thermal conductivity. The relative thickness of thermal and momentum

boundary layer is controlled by Prandtl number. For small Pr, heat distributed

rapidly corresponds to the momentum.” [39]

Definition 2.5.3 [Skin Friction Coefficient]

“The steady flow of an incompressible gas or liquid in a long pipe of internal D.

The mean velocity is denoted by uw. The skin friction coefficient can be defined
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as

Cf =
2τ0
ρu2w

,

where τ0 denotes the wall shear stress and ρ is the density.” [51]

Definition 2.5.4 [Weissenberg Number]

“The Weissenberg number is typically defined as,

We =
λu

L
,

where u and L are a characteristic velocity and length scale for the flow. The

Weissenberg number indicates the relative importance of fluid elasticity for a given

flow problem.” [39]

Definition 2.5.5 [Nusselt Number]

“The hot surface is cooled by a cold fluid stream. The heat from the hot surface,

which is maintained at a constant temperature, is diffused through a boundary

layer and convected away by the cold stream. Mathematically,

Nu =
qL

k
,

where q stands for the convection heat transfer, L for the characteristic length and

k stands for thermal conductivity.” [52]

Definition 2.5.6 [Sherwood Number]

“It is the nondimensional quantity which show the ratio of the mass transport by

convection to the transfer of mass by diffusion. Mathematically:

Sh =
kL

D

Here, L is characteristics length, D is the mass diffusivity and k is the mass

transfer” coeffcient.” [53]

Definition 2.5.7 [Reynolds Number]

“It is defined as the ratio of inertia force of a flowing fluid and the viscous force

of the fluid. Mathematically,

Re =
V L

ν
,
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where V denotes the free stream velocity, L is the characteristic length and ν

stands for kinematic viscosity.” [40]

2.6 Governing Laws

Definition 2.6.1 [Continuity Equation]

“The principle of conservation of mass can be stated as the time rate of change

of mass is fixed volume is equal to the net rate of flow of mass across the surface.

Mathematically, it can be written as

∂ρ

∂t
+∇.(ρv) = 0, [54]

where t is theotime, ρ is the density of the medium, v the velocity vector, and ∇

is the nabla or del operator. If the fluid is an incompressible, the conservation of

mass will be expressed by

∇.v = 0.′′

Definition 2.6.2 [Momentum Equation]

“The momentum equation states that the time rate of change of linear momentum

of a given set of particles is equal to the vector sum of all the external forces acting

on the particles of the set, provided Newtons Third Law of action and reaction

governs the internal forces. Mathematically, it can be written as:

∂

∂t
(ρu) +∇.[(ρu)u] = ∇.T + ρg.” [54]

Definition 2.6.3 [Energy Equation]

“The law of conservation of energy states that the time rate of change of the total

energy is equal to the sum of the rate of work done by the applied forces and

change of heat content per unit time.

∂ρ

∂t
+∇.ρu = −∇.q +Q+ φ,
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where φ is the dissipation function.” [54]

2.7 Shooting Method

The shooting method converts a boundary value problem into a set of initial value

problems. If each ODEs initial condition is known, this system of ODEs can be

numerically solved. The problem statement for a BVP with an nth-order ODE

contains n boundary conditions, some of which are supplied at the domain’s be-

ginning and some at the end. The boundary conditions provided at the first point

of the domain are utilised as initial conditions for the system. The boundary

conditions provided at the domain’s first point are utilised as the system’s ini-

tial conditions when the nth-order ODE is turned into a system of n first-order

ODEs. We make educated guesses about the additional initial conditions needed

to solve the system. The system is then solved, and the boundary conditions at

the domain’s end point are compared to the result at that point. If the numerical

solution is not precise enough, the system is solved again with new initial values

determined using Newton’s Iterative technique. Until the numerical solution at

the domain’s endpoint complies with the specified boundary conditions, this pro-

cess is repeated. A thorough explanation of the shooting procedure in the event

of a second-order BVP have beend discussed below.

Consider the following nonlinear boundary value problem

U ′′(x) = U(x)U ′(x) + 2U2(x)

U(0) = 0, U(S) = G.

 (2.2)

In order to reduce the order of the above BVP, consider the following notations.

U = Z1, U ′ = Z ′1 = Z2, U ′′ = Z ′2. (2.3)
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After utilizing the above mentioned notations, (2.2) is reduced into the following

system of first order ODEs.

Z ′1 = Z2, Z1(0) = 0, (2.4)

Z ′2 = Z1Z2 + 2Z2
1 , Z2(0) = e, (2.5)

where e is the starting condition that is lacking but can be inferred using Newton’s

approach. The Runge-Kutta method of order four will be used to numerically solve

the aforementioned IVP. It is necessary to choose the missing condition e in such

a way that

Z1(S, e) = G. (2.6)

For convenience, now onward Z1(S, e) will be denoted by Z1(e).

Let us further denote Z1(e)−G by H(e), so that

H(e) = 0. (2.7)

The following Newton’s iterative formula can be used to solve the aforementioned

equation

en+1 = en − H(en)

∂H(en)

∂e

,

or

en+1 = en − Z1(e
n)−G

∂Z1(e
n)

∂e

. (2.8)

To find
∂Z1(e

n)

∂e
, introduce the following notations

∂Z1

∂e
= Z3,

∂Z2

∂e
= Z4. (2.9)
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Newton’s iterative formula given below can be used to solve the aforementioned

equation

en+1 = en − Z1(e)− J
Z3(e)

. (2.10)

We now obtain a different system of ODEs by differentiating the two first order

ODE system (2.4)-(2.5) with respect to e

Z ′3 = Z4, Z3(0) = 0. (2.11)

Z ′4 = Z3Y2 + Z1Z4 + 4Z1Z3, Z4(0) = 1. (2.12)

Writing all the four ODEs (2.4), (2.5), (2.11) and (2.12) together, we get the

following initial value problem

Z ′1 = Z2, Z1(0) = 0

Z ′2 = Z1Z2 + 2Z2
1 , Z2(0) = e

Z ′3 = Z4, Z3(0) = 0

Z ′4 = Z3Z2 + Z1Z4 + 4Z1Z3, Z4(0) = 1.

Runge-Kutta method of order 4 will be used to numerically solve the combined

above system. The following is the set of halting criteria for the Newton’s tech-

nique:

| Z1(e)−G |< ε,

where ε is an arbitrarily small positive number.



Chapter 3

Non-Darcian MHD Williamson

Nanofluid for the Entropy

Analysis in the Presence of

Nonlinear Thermal Radiation

across a Stratified Sheet

3.1 Introduction

In this chapter, a comprehensive review of the work done by Bilal et al. [37] has

been presented. The non-linear PDEs governing the flow model are convertedointo

a system of dimensionless ODEsowith the use of appropriate similarity transfor-

mations. With the help of the shooting technique, the ODEs have been solved

using the MATLAB software. The numerical computations for the analysis of the

impact of the variation of various dimentionless parameters on f ′(η), θ(η), φ(η)

and on the rate of entropy generation NG has been discussed in the last part of

this chapter. Tables and graphs have been used to present the numerical results

for the clear visualization of the reader.

20
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3.2 Description of Problem

Figure 3.1: Geometry of physical model

A stratified sheet has been used to study a two dimentional non-Darcian MHD

Williamson nanofluid flow. The irreversibilities of thermal conductivity, Joule

dissipation, and the Ohmic effect are utilized to examine the production of entropy.

The sheet is supposed to be stretching down the x-axis with a velocity of u =

Uw(x) = ax, where a is a positive constant. Figure 3.1 shows the physical flow

model. The x-axis in the figure is taken in the direction of the stretching velocity,

and the y-axis is taken perpendicular to it. While C∞ = C0 + Ex is used as

the ambient concentration, T∞ = T0 + Bx represents the ambient temperature.
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The wall’s temperature and concentration have been taken as, Tw = T0 +Ax and

Cw = C0 +Dx respectively.

3.2.1 The Governing PDEs

The set of equations which govern the flow pattern are as follows:

∂u

∂x
+
∂v

∂y
= 0, (3.1)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
+
√

2νγ
∂u

∂y

∂2u

∂y2
− σ

ρ
B0

2u− ν

k∗
u− CF√

k∗
u2, (3.2)

(ρCp)f

(
u
∂T

∂x
+ v

∂T

∂y

)
= k

∂2T

∂y2
+ (ρCp)S

[
DB

∂T

∂y

∂C

∂Y
+
DT

T∞
(
∂T

∂y
)2

]

+ σB0
2u2 + µ0

(
∂u

∂y

)2

+ µ0γ

(
∂u

∂y

)3

− ∂qr
∂y

, (3.3)

u
∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2
+
DT

T∞

∂2T

∂y2
− k1(C − C∞). (3.4)

The boundaryoconditions corresponding to the flow model are given below.

u = Uw(x) = ax, ov = 0, oT = Tw, C = Cw, oat y = 0,

u→ 0, T → T∞, oC → C∞ as y →∞.

 (3.5)

3.2.2 Similarity Transformations

The following analogies will be utilized to transform the nonlinear PDEs into a

system of dimensionless ODEs.

u = axf ′(η), ov = −
√
aνf(η), η =

√
a

ν
y,

θ(η) =
T − T∞
Tw − T0

, oφ(η) =
C − C∞
Cw − C0

,

 (3.6)

where T = Tw = T0 + Ax, T∞ = T0 + Bx, C = Cw = C0 + Dx, C∞ = C0 + Ex.

Here A, B, C, D and E are the dimentional constants having unit K/m. From
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(3.6), T can be written as

T = (Tw − T0)θ(η) + T∞

= Axθ(η) + (T0 +Bx)

= (T0 +Bx)

[
Ax

T0 +Bx
θ(η) + 1

]

= T∞

(
Ax

Bx( T0
Bx

+ 1)
θ(η) + 1

)
= T∞

(
θ(η)

N2(N3 + 1)
+ 1

)
, (3.7)

where the temperature ratios N2 and N3 are formulated as:

N2 =
B

A
, N3 =

T0
Bx

.

The radiative heat flux qr can be expressed as

qr = −4σ∗

3k∗
∂T 4

∂y

= −16σ∗

3k∗
T 3∂T

∂y
, (3.8)

where the absorption coefficient is k∗ and the Stefan-Boltzman constant is σ∗. A

Taylor series can be used to expand T 4 about T∞ if the temperature difference is

relatively modest.

T 4 = T 4
∞ + 4T 3

∞(T − T∞) + 6T 2
∞(T − T∞)2 + ...

Leaving aside the higher order terms, we have

T 4 = T 4
∞ + 4T 3

∞(T − T∞)

= T 4
∞ + 4T 3

∞T − 4T 4
∞

= −3T 4
∞ + 4T 3

∞T

= 4T 3
∞T − 3T 4

∞.
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Now differentiating both side of (3.8) w.r.t. to y,

∂qr
∂y

=
∂

∂y

(
− 16σ∗

3k∗
T 3∂T

∂y

)

= −16σ∗

3k∗
∂

∂y

(
T 3∂T

∂y

)

= −16σ∗

3k∗

(
T 3∂

2T

∂y2
+ 3T 2

(
∂T

∂y

)2
)
.

Now, by using the expression of T from (3.7), the above will be reduced to

∂qr
∂y

= −16σ∗

3k∗

[
T 3
∞

(
θ(η)

N2(N3 + 1)
+ 1

)3

(Axθ′′(η)
a

ν
)

+ 3T 2
∞

(
θ(η)

N2(N3 + 1)
+ 1

)2
a(Ax)2

ν
(θ′(η))2

]
. (3.9)

3.2.3 Physical Quantitiesoof Interest

Below are the skinofriction coefficient,oNusselt number, and Sherwoodonumber in

their dimensional form. In the next section of this chapter, when we explore the

solution to our flow problem, the dimensionless version of these parameters will

be derived and employed.

Cfx =
−2(τw)y=0

ρu2w(x)

Nux =
xqw

k(Tw − T∞)

Shx =
xqm

DB(Cw − C∞)


(3.10)

3.2.4 Entropy Generation Modeling

Physically speaking, entropy is a disorder of a system and surroundings. Entropy

generally develops in a variety of systems, notably those involving flow-driven

force, Joule heating, and fluid viscous force. Therefore, entropy is also known as

the number of irreversibilities. Because of this, heat cannot be completely changed
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into work. In dimensional form, the entropy generation is written as:

SG =
k

T 2
∞

[(
∂T

∂y

)2

+
16σ∗T 3

3kk∗

(
∂T

∂y

)2
]

+
RDA

C∞

(
∂C

∂y

)2

+
σ

T∞
B2

0u
2

+
RDA

C∞

(
∂C

∂y

)(
∂T

∂y

)
+
µ0

T∞

[(
∂u

∂y

)2

+ γ

(
∂u

∂y

)3
]
. (3.11)

3.3 Conversion of Mathematical Model into Di-

mentionless Form

3.3.1 The Governing ODEs

The detailed procedure for the conversion of (3.1) to (3.4) into the dimentionless

form has been discussed below.

∂u

∂x
=

∂

∂x

(
axf ′(η)

)
= af ′(η) (3.12)

∂v

∂y
=

∂

∂y

(
−
√
aνf(η)

)
= −af ′(η) (3.13)

The continuity equation (3.1) can easily be seen satisfied by adding (3.12) and

(3.13) as follows:

∂u

∂x
+
∂v

∂y
= af ′(η)− af ′(η) = 0.

Moreover,

u
∂u

∂x
+ v

∂u

∂y
= axf ′(η).af ′(η)−

√
aνf(η)

∂

∂y
(axf ′(η))

= axf ′(η).af ′(η)−
√
aνf(η).axf ′′(η)

∂

∂y
(η)

= axf ′(η)

(
af ′(η)

)
−
√
aνf(η)

(
axf ′′(η)

√
a

ν

)
.
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After simplifying, we get the left side of the momentun equation (3.2) as follows:

u
∂u

∂x
+ v

∂u

∂y
= a2xf ′

2
(η)− a2xf(η)f ′′(η). (3.14)

In order to reform the right side of the momentum equation, the following deriva-

tives will be helpful

ν
∂2u

∂y2
= ν

∂

∂y

(
axf ′′(η)

√
a

ν

)
= νaxf ′′′(η)

√
a

ν

√
a

ν

= νax
a

ν
f ′′′(η) = a2xf ′′′(η) (3.15)

⇒
√

2νγ
∂u

∂y

∂2u

∂y2
=
√

2νγ

(
(axf ′′(η))

√
a

ν

)(
a2x

ν
f ′′′(η)

)
=

(√
2γ
a3x2
√
a√

ν

)
f ′′(η)f ′′′(η) (3.16)

Furthermore,

σ

ρ
B2

0u =
σ

ρ
B2

0axf
′(η), (3.17)

ν

k∗
u =

ν

k∗
axf ′(η), (3.18)

CF√
k∗
u2 =

CF√
k∗
a2x2f ′

2
(η). (3.19)

As a result, the right side of (3.2) gets the form:

a2xf ′′′ +

(√
2γ
a3x2
√
a√

ν

)
f ′′f ′′′ − σ

ρ
B2

0axf
′ − ν

k∗
axf ′ − CF√

k∗
a2x2f ′

2
. (3.20)

By equating (3.14) and (3.20), we get

a2xf ′
2 − a2xff ′′ = a2xf ′′′ +

(√
2γ
a3x2
√
a√

ν

)
f ′′f ′′′ − σ

ρ
B2

0axf
′

− ν

k∗
axf ′ − CF√

k∗
a2x2f ′

2
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⇒ f ′
2 − ff ′′ = f ′′′ +

√
2γ
ax
√
a√
ν
f ′′f ′′′ − σ

aρ
B2

0f
′ − ν

ak∗
f ′ − CF√

k∗
xf ′

2

⇒ f ′′′ − f ′2(η) + ff ′′ +
√

2γ
ax
√
a√
ν
f ′′f ′′′ − σ

aρ
B2

0f
′ − ν

ak∗
f ′ − CF√

k∗
xf ′

2
= 0

⇒ f ′′′ = f ′
2 − ff ′′ −Wef ′′f ′′′ +Mf ′ + λf ′ + Frf ′

2
. (3.21)

In (3.21), Fr represents the inertial coefficient, We the Weissenberg number and

M the magnetic parameter. The dimentionless parameters used in the above ex-

pression are formulated as follows:

We =

√
2a3

ν
γx, M =

(
σB2

0

ρa

)
, λ =

ν

ak∗
, F r =

xCF√
k∗
.

For the conversion of energy equation (3.3), the following procedure will be helpful.

θ(η) =
T − T∞
Tw − T0

.

⇒ T = T∞ + (Tw − T0)θ(η).

We also know that

T∞ = T0 +Bx,

Tw − T0 = Ax.

∵ T = (T0 +Bx) + (Ax)θ(η).

∴
∂T

∂x
=

∂

∂x

(
(T0 +Bx) + (Ax)θ(η)

)
= B + Aθ(η).

⇒ u
∂T

∂x
= axf ′(η)

(
B + Aθ(η)

)
= Baxf ′(η) + aAxf ′(η)θ(η). (3.22)

Furthermore,

⇒ ∂T

∂y
=

∂

∂y

(
(T0 +Bx) + (Ax)θ(η)

)
= Axθ′(η)

∂

∂y

(
η

)
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= Axθ′(η)

√
a

ν
. (3.23)

⇒ v
∂T

∂y
= v

(
Axθ′(η)

√
a

ν

)
= (−

√
aνf ′(η))

(
Axθ′(η)

√
a

ν

)
= −aAxf(η)θ′(η). (3.24)

By adding (3.22) and (3.24), we get

u
∂T

∂x
+ v

∂T

∂y
= Baxf ′(η) + aAxf ′(η)θ(η)− aAxf(η)θ′(η).

⇒ (ρCP )f

(
u
∂T

∂x
+ v

∂T

∂y

)
= (ρCP )f

(
Baxf ′ + aAxf ′θ)− aAxfθ′

)
. (3.25)

Now, the following procedure will help us to compute the right side of the energy

equation.

∂T

∂y
= Ax

√
a

ν
θ′(η).

⇒ ∂

∂y

(
∂T

∂y

)
=

∂

∂y

(
Ax

√
a

ν
θ′(η)

)
.

⇒ ∂2T

∂y2
= Axθ′′(η)

a

ν
.

⇒ k
∂2T

∂y2
=
kaAx

ν
θ′′(η). (3.26)

From (3.6), we can write

C = C∞ + (Cw − C∞)φ(η).

Since

C∞ = C0 + Ex,

Cw = C∞ +Dx,
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therefore,

C = C0 + Ex+Dxφ(η).

⇒ ∂C

∂y
=

∂

∂y

(
C0 + Ex+Dxφ(η)

)
= Dxφ′(η)

∂

∂y
(η)

= Dx

√
a

ν
φ′(η).

⇒ ∂C

∂y

∂T

∂y
= Dx

√
a

ν
φ′(η)Ax

√
a

ν
θ′(η)

= (Ax)(Dx)
a

ν
θ′(η)φ′(η).

⇒ DB

(
∂C

∂y

∂T

∂y

)
= DB

(
(Ax)(Dx)

a

ν
θ′(η)φ′(η)

)
.

By using the formulation of DB, we get

DB

(
∂C

∂y

∂T

∂y

)
=
Nbν(ρCP )f
(ρCP )SDx

(
(Ax)(Dx)

a

ν
θ′(η)φ′(η)

)
=
Nb(ρCP )f

(ρCP )S

(
aAxθ′(η)φ′(η)

)
. (3.27)

As computed earlier,

∂T

∂y
= Ax

√
a

ν
θ′(η).

⇒
(
∂T

∂y

)2

=

(
Ax

√
a

ν
θ′(η)

)2

= (Ax)2
a

ν
θ′

2
(η). (3.28)

⇒ DT

T∞

(
∂T

∂y

)2

=
DT

T∞

(
(Ax)2

a

ν
θ′

2
(η)

)
.

By using the value of the parameter DT , we get

DT

T∞

(
∂T

∂y

)2

=
Ntν(ρCP )fT∞
(ρCP )SAxT∞

(
(Ax)2

a

ν
θ′

2
(η)

)
=
Nt(ρCP )f

(ρCP )S

(
aAxθ′

2
(η)

)
. (3.29)
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By adding (3.27) and (3.29), we get

DB

(
∂C

∂y

∂T

∂y

)
+
DT

T∞

(
∂T

∂y

)2

=
Nb(ρCP )f

(ρCP )S

(
aAxθ′φ′

)
+
Nt(ρCP )f

(ρCP )S

(
aAxθ′

2

)
.

⇒ (ρCP )S

[
DB

(
∂C

∂y

∂T

∂y

)
+
DT

T∞

(
∂T

∂y

)2
]

= (ρCP )S

[
Nb(ρCP )f

(ρCP )S

(
aAxθ′φ′

)

+
Nt(ρCP )f

(ρCP )S

(
aAxθ′

2

)]
.

⇒ (ρCP )S

[
DB

(
∂C

∂y
.
∂T

∂y

)
+
DT

T∞

(
∂T

∂y

)2
]

= Nb(ρCp)f

(
aAxθ′φ′

)
+Nt(ρCp)f

(
aAxθ′

2

)
. (3.30)

By using the formula of B2
0 and u, we get

σB2
0u

2 = σ
Mρa

σ

(
axf ′)(η)

)2

= a3Mρx2f ′
2
(η), (3.31)

µ0

(
∂u

∂y

)2

= µ0

(
∂

∂y
(axf ′(η))

)2

= µ0

(
axf ′′(η))

∂

∂y
(η)

)2

= µ0

(
axf ′′(η))

√
a

ν

)2

=
µ0a

3x2

ν
f ′′

2
(η). (3.32)

⇒ µ0γ

(
∂u

∂y

)3

= µ0γ

(
∂

∂y
(axf ′(η))

)3

= µγ

(
axf ′′(η))

∂

∂y
(η)

)3

=
µ0γa

9
2x3

ν
3
2

f ′′
3
(η). (3.33)
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From (3.9),

∂qr
∂y

= −16σ∗

3k∗

[
T 3
∞

(
θ(η)

N2(N3 + 1)
+ 1

)3

(Axθ′′(η)
a

ν
)

+ 3T 2
∞

(
θ(η)

N2(N3 + 1)
+ 1

)2
a(Ax)2

ν
(θ′(η))2

]
.

After expanding and simplifying the expression, we get

⇒ ∂qr
∂y

= −16σ∗

3k∗
aAxT 3

∞
ν

[(
1

N2(N3 + 1)

)3

θ3(η)θ′′(η) + θ′′(η)

+ 3

(
1

N2(N3 + 1)

)2

θ2(η)θ′′(η) + 3

(
1

N2(N3 + 1)

)
θ(η)θ′′(η)

+ 3

(
1

N2(N3 + 1)

)2

θ2(η)θ′
2
(η) + 3

(
1

N2(N3 + 1)

)
θ′

2
(η)

+ 6

(
1

N2(N3 + 1)

)2

θ(η)θ′
2
(η)

]
.

⇒ −∂qr
∂y

=
16σ∗

3k∗
aAxT 3

∞
ν

[(
1

N2(N3 + 1)

)3

θ3(η)θ′′(η) + θ′′(η)

+ 3

(
1

N2(N3 + 1)

)2

θ2(η)θ′′(η) + 3

(
1

N2(N3 + 1)

)
θ(η)θ′′(η)

+ 3

(
1

N2(N3 + 1)

)2

θ2(η)θ′
2
(η) + 3

(
1

N2(N3 + 1)

)
θ′

2
(η)

+ 6

(
1

N2(N3 + 1)

)2

θ(η)θ′
2
(η)

]
. (3.34)

Adding (3.26), (3.30), (3.31), (3.32), (3.33) and (3.34), we get

k
∂2T

∂y2
+ (ρCp)S

[
DB

∂T

∂y

∂C

∂y
+
DT

T∞

(
∂T

∂y

)2
]

+ σB0
2u2 + µ0

(
∂u

∂y

)2

+ µ0γ

(
∂u

∂y

)3

− ∂qr
∂y

=
kaAx

ν
θ′′(η) +Nb(ρCp)f

(
aAxθ′(η)φ′(η)

)
+Nt(ρCp)f

(
aAxθ′

2
(η)

)
+ a3Mρx2f ′

2
(η) +

µ0a
3x2

ν
f ′′

2
(η) +

µ0γa
9
2x3

ν
3
2

f ′′
3
(η)

+
16σ∗

3k∗
aAxT 3

∞
ν

[(
1

N2(N3 + 1)

)3

θ3(η)θ′′(η) + θ′′(η)

+ 3

(
1

N2(N3 + 1)

)2

θ2(η)θ′′(η) + 3

(
1

N2(N3 + 1)

)
θ(η)θ′′(η)
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+ 3

(
1

N2(N3 + 1)

)2

θ2(η)θ′
2
(η)

+ 3

(
1

N2(N3 + 1)

)
θ′

2
(η) + 6

(
1

N2(N3 + 1)

)2

θ(η)θ′
2
(η)

]

=
kaAx

ν
θ′′(η) +Nb(ρCp)f

(
aAxθ′(η)φ′(η)

)
+Nt(ρCp)f

(
aAxθ′

2
(η)

)
+ a3Mρx2f ′

2
(η) +

µ0a
3x2

ν
f ′′

2
(η) +

µ0γa
9
2x3

ν
3
2

f ′′
3
(η)

+
16σ∗

3k∗
aAxT 3

∞
ν

[(
1

N2(N3 + 1)

)3

θ3(η)θ′′(η) + θ′′(η)

+ 3

(
1

N2(N3 + 1)

)2

θ2(η)θ′′(η) + 3

(
1

N2(N3 + 1)

)
θ(η)θ′′(η)

+ 3

(
1

N2(N3 + 1)

)2

θ2(η)θ′
2
(η)

+ 3

(
1

N2(N3 + 1)

)
θ′

2
(η) + 6

(
1

N2(N3 + 1)

)2

θ(η)θ′
2
(η)

]
. (3.35)

By equating (3.25) and (3.35), we get

(ρCP )f

(
Baxf ′(η) + aAxf ′(η)θ(η)− aAxf(η)θ′(η)

)
=
kaAx

ν
θ′′(η)

+Nb(ρCp)f

(
aAxθ′(η)φ′(η)

)
+Nt(ρCp)f

(
aAxθ′

2
(η)

)
+ a3Mρx2f ′

2
(η)

+
µ0a

3x2

ν
f ′′

2
(η) +

µ0γa
9
2x3

ν
3
2

f ′′
3
(η)

+
16σ∗

3k∗
aAxT 3

∞
ν

[(
1

N2(N3 + 1)

)3

θ3(η)θ′′(η) + θ′′(η)

+ 3

(
1

N2(N3 + 1)

)2

θ2(η)θ′′(η) + 3

(
1

N2(N3 + 1)

)
θ(η)θ′′(η)

+ 3

(
1

N2(N3 + 1)

)2

θ2(η)θ′
2
(η)

+ 3

(
1

N2(N3 + 1)

)
θ′

2
(η) + 6

(
1

N2(N3 + 1)

)2

θ(η)θ′
2
(η)

]
.
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⇒ kaAx

ν
θ′′(η)− (ρCP )f

(
Baxf ′(η) + aAxf ′(η)θ(η)− aAxf(η)θ′(η)

)
+Nb(ρCp)f

(
aAxθ′(η)φ′(η)

)
+Nt(ρCp)f

(
aAxθ′

2
(η)

)
+ a3Mρx2f ′

2
(η)

+
µ0a

3x2

ν
f ′′

2
(η) +

µ0γa
9
2x3

ν
3
2

f ′′
3
(η)

+
16σ∗

3k∗
aAxT 3

∞
ν

[(
1

N2(N3 + 1)

)3

θ3(η)θ′′(η) + θ′′(η)

+ 3

(
1

N2(N3 + 1)

)2

θ2(η)θ′′(η) + 3

(
1

N2(N3 + 1)

)
θ(η)θ′′(η)

+ 3

(
1

N2(N3 + 1)

)2

θ2(η)θ′
2
(η)

+ 3

(
1

N2(N3 + 1)

)
θ′

2
(η) + 6

(
1

N2(N3 + 1)

)2

θ(η)θ′
2
(η)

]
= 0.

⇒ θ′′(η)− ν(ρCP )f
k

B

A
f ′(η)− ν(ρCP )f

k
f ′(η)θ(η) +

ν(ρCP )f
k

f(η)θ′(η)

+
Nbν(ρCp)f

k
θ′(η)φ′(η) +

Ntν(ρCp)f
k

θ′
2
(η) +

a2Mρx2

kAx
f ′

2
(η) +

µ0a
2x2

kAx
f ′′

2
(η)

+
µ0γa

7
2x3

ν
1
2kAx

f ′′
3
(η) +

16σ∗

3k∗
T 3
∞
k

[(
1

N2(N3 + 1)

)3

θ3(η)θ′′(η) + θ′′(η)

+ 3

(
1

N2(N3 + 1)

)2

θ2(η)θ′′(η) + 3

(
1

N2(N3 + 1)

)
θ(η)θ′′(η)

+ 3

(
1

N2(N3 + 1)

)2

θ2(η)θ′
2
(η)

+ 3

(
1

N2(N3 + 1)

)
θ′

2
(η) + 6

(
1

N2(N3 + 1)

)2

θ(η)θ′
2
(η)

]
= 0.

By using the definitions of different dimentionless parameters in the above expres-

sion, we will get the more compact form as the following.

θ′′(η) + Pr

[
f(η)θ′(η)−N2f

′(η)− f ′(η)θ(η) +Nb

(
θ′(η)φ′(η) +

Nt

Nb
θ′

2
(η)

)

+MEcf ′
2
(η) + Ecf ′′

2
(η) +

WeEc√
2

f ′′
3
(η)

]
+

4

3
Rd

[(
1

N2(N3 + 1)

)3

θ3(η)θ′′(η)
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+ θ′′(η) + 3

(
1

N2(N3 + 1)

)2

θ2(η)θ′′(η) + 3

(
1

N2(N3 + 1)

)
θ(η)θ′′(η)

+ 3

(
1

N2(N3 + 1)

)2

θ2(η)θ′
2
(η)

+ 3

(
1

N2(N3 + 1)

)
θ′

2
(η) + 6

(
1

N2(N3 + 1)

)2

θ(η)θ′
2
(η)

]
= 0.

Let A1 = 1
N2(N3+1)

, then the aboveoequation becomes

θ′′(η) + Pr

[
f(η)θ′(η)−N2f

′(η)− f ′(η)θ(η) +Nb

(
θ′(η)φ′(η) +

Nt

Nb
θ′

2
(η)

)

+MEcf ′
2
(η) + Ecf ′′

2
(η) +

WeEc√
2

f ′′
3
(η)

]
+

4

3
Rd

[
A3

1θ
3(η)θ′′(η) + θ′′(η)

+ 3A2
1θ

2(η)θ′′(η) + 3A1θ(η)θ′′(η)

+ 3A2
1θ

2(η)θ′
2
(η) + 3A1θ

′2(η) + 6A2
1θ(η)θ′

2
(η)

]
= 0. (3.36)

In (3.36), Pr represents the Prandtl number, Ec the Eckert number, We the Weis-

senberg number, M the magnetic parameter, Nt the thermophoresis parameter,

Nb the Brownian motion parameter, N2 the temperature ratio and Rd represents

the thermal radiation parameter. The dimentionless parameters used in the above

equation are formulated as:

Pr =
ν(ρCP )f

k
, Ec =

a2x2

CP (Ax)
,

We =

√
2a3

ν
γx, M =

σB2
0

ρa
,

N2 =
B

A
, Nt =

(ρCP )SDT (Tw − T0)
ν(ρCP )fT∞

,

Nb =
(ρCP )SDB(Cw − C0)

ν(ρCP )f
.


(3.37)
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Now, the conversion of concentration equation (3.4) will be discussed in detail

C = C0 + Ex+ (Dx)φ(η)

⇒ ∂C

∂x
=

∂

∂x

(
C0 + Ex+ (Dx)φ(η)

)
= E +Dφ(η)

⇒ u
∂C

∂x
= axf ′(η)

(
E +Dφ(η)

)
= aExf ′(η) + aDxf ′(η)φ(η). (3.38)

Now,

∂C

∂y
=

∂

∂y

(
C0 + Ex+ (Dx)φ(η)

)
= Dxφ′(η)

∂

∂y
(η) = Dxφ′(η)

√
a

ν
.

⇒ v
∂C

∂y
= (−

√
aνf(η))

(
Dxφ′(η)

√
a

ν

)
= −aDxf(η))φ′(η). (3.39)

By adding (3.38) and (3.39), we will get the left side of the concentration equation

u
∂C

∂x
+ v

∂C

∂y
= aExf ′(η) + aDxf ′(η)φ(η)− aDxf(η))φ′(η). (3.40)

The following conversion will help us to reform the right side of the concentration

equation.

∂2C

∂y2
=

∂

∂y

(
Dx

√
a

ν
φ′(η)

)
= Dx

√
a

ν
φ′′(η)

√
a

ν

= Dx
a

ν
φ′′(η).

⇒ DB

(
∂2C

∂y2

)
= DB

(
Dx

a

ν
φ′′(η)

)
(3.41)

From (3.26),

∂2T

∂y2
=
aAx

ν
θ′′(η).

⇒ DT

T∞

(
∂2T

∂y2

)
=
DT

T∞

(
aAx

ν
θ′′(η)

)
. (3.42)
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We know that

C − C∞ = (Cw − C0)φ(η).

⇒ −k1(C − C∞) = −ak
(

(Cw − C0)

)
φ(η). (3.43)

By using (3.41)-(3.43), we get the right side of the concentration equation

DB

(
∂2C

∂y2

)
+
DT

T∞

∂2T

∂y2
− k1(C − C∞) = DB

(
Dx

a

ν
φ′′(η)

)
+
DT

T∞

(
aAx

ν
θ′′(η)

)
− ak

(
Cw − C0φ(η)

)
. (3.44)

By equating (3.40) and (3.44), we get

aExf ′ + aDxf ′φ− aDxfφ′ = DB

(
Dx.

a

ν
φ′′
)

+
DT

T∞

(
aAx

ν
θ′′
)
− ak(Cw − C0)φ.

⇒ DB

(
Dx

a

ν
φ′′
)

+
DT

T∞

(
aAx

ν
θ′′
)
− aDxf ′φ− aExf ′ + aDxfφ′

− ak(Cw − C0)φ = 0.

⇒ φ′′ +

DT

T∞

(
aAx
ν

)
DB.Dx

(
a
ν

)θ′′ − aDx

DB.Dx

(
a
ν

)f ′φ− aEx

DBDx

(
a
ν

)f ′
+

aDx

DB.Dx

(
a
ν

)fφ′ − ak(Dx)

DBDx

(
a
ν

)φ = 0.

⇒ φ′′ +
(ρCP )SDTAx

(ρCP )fνT∞

ν(ρCP )f
DBDx(ρCP )S

θ′′ − αν

αDB

f ′φ(η)− ανE

αDBD
f ′

+
να

DBα
fφ′ − ανk

αDB

φ = 0.

⇒ φ′′ +
Nt

Nb
θ′′ −

(
αν

αDB

f ′φ+
ανE

αDBD
f ′ − να

DBα
fφ′
)
− ανk

αDB

φ = 0

⇒ φ′′ +
Nt

Nb
θ′′ − αν

DBα

(
f ′φ+N1f

′ − fφ′
)
− ανk

αDB

φ = 0.

⇒ φ′′ +
Nt

Nb
θ′′ − LePr

(
f ′φ+N1f

′ − f(η)φ′
)
− LePrkφ = 0. (3.45)
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In the above equation (3.45), Pr represents the Prandtl number, Le the Lewis

number, k the chemical reaction parameter, N1 the solutal stratification param-

eter, Nt the thermophoresis parameter and Nb represents the Brownian motion

parameter. Most of the dimentionless parameters used in the above expression are

already formulated in (3.37) but few are formulated as:

Le =
α

DB

, N1 =
E

D
. (3.46)

The boundary conditions corresponding to PDEs at y = 0 are transformed into

the dimensionaless form through the following procedure.

u = Uw(x) = ax, at y = 0.

u = axf ′(η).

⇒ axf ′(η) = ax. at η = 0.

⇒ f ′(η) = 1. at η = 0.

⇒ f ′(η) = 1. at η = 0.

v = 0, at y = 0.

v = −
√
aνf(η).

⇒ −
√
aνf(η) = 0. at η = 0.

⇒ f(η) = 0. at η = 0.

⇒ f(η) = 0. at η = 0.

T = Tw at y = 0.

⇒ θ(η)(Tw − T0) + T∞ = T. at η = 0.

⇒ θ(η)(Tw − T0) = Tw − T∞. at η = 0.

⇒ θ(η)(Ax) = (T0 + Ax)− (T0 +Bx). at η = 0.

⇒ θ(η) =
1

Ax

(
T0 + Ax− T0 −Bx

)
. at η = 0.

⇒ θ(η) = 1− B

A
. at η = 0.

⇒ θ(η) = 1−N2. at η = 0.

⇒ θ(η) = 1−N2. at η = 0.
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C = Cw, at y = 0.

⇒ φ(η)(Cw − C0) + C∞ = C. at η = 0.

⇒ φ(η)(Cw − C0) = Cw − C∞. at η = 0.

⇒ φ(η)(Dx) = (C0 +Dx)− (C0 + Ex). at η = 0.

⇒ φ(η) =
1

Dx

(
C0 +Dx− C0 − Ex

)
. at η = 0.

⇒ φ(η) = 1− E

D
. at η = 0.

⇒ φ(η) = 1−N1. at η = 0.

⇒ φ(η) = 1−N1. at η = 0.

Now, the boundary conditions corresponding to PDEs with y → ∞ are trans-

formed into the dimensionaless form through the following procedure.

u→ 0, as y →∞.

u = axf ′(η)

⇒ axf ′(η)→ 0. as η →∞.

⇒ f ′(η)→ 0. as η →∞.

⇒ f ′(η)→ 0. as η →∞.

T → T∞, as y →∞.

T = θ(η)(Tw − T0) + T∞.

⇒ θ(η)(Tw − T0) + T∞ → T∞. as η →∞.

⇒ θ(η)(Ax)→ 0. as η →∞.

⇒ θ(η)→ 0. as η →∞.

C → C∞, as y →∞.

C = φ(η)(Cw − C0) + C∞

⇒ φ(η)(Cw − C0) + C∞ → C∞. as η →∞.

⇒ φ(η)(Dx)→ 0. as η →∞.

⇒ φ(η)→ 0. as η →∞.
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By combining (3.21), (3.36) and (3.45), the dimensionless form of the governing

model is given below.

f ′′′ − f ′2 + ff ′′ +Wef ′′f ′′′ −Mf ′ − λf ′ − Frf ′2 = 0, (3.47)

θ′′ + Pr

[
fθ′ −N2f

′ − f ′θ +Nb

(
θ′φ′ +

Nt

Nb
θ′

2

)
+MEcf ′

2

+ Ecf ′′
2

+
WeEc√

2
f ′′

3

]
+

4

3
Rd

[
A3

1θ
3θ′′ + θ′′ + 3A2

1θ
2θ′′

+ 3A1θθ
′′ + 3A2

1θ
2θ′

2
+ 3A1θ

′2 + 6A2
1θθ
′2

]
= 0, (3.48)

φ′′ +
Nt

Nb
θ′′ − LePr

(
f ′φ+N1f

′ − fφ′
)
− LePrkφ = 0. (3.49)

The dimentionless form of BCs corresponding to (3.5) are given below.

f(η) = 0, f ′(η) = 1, θ(η) = 1−N2, φ(η) = 1−N1, at η = 0,

f ′(η)→ 0, θ(η)→ 0, φ(η)→ 0 as η →∞.

 (3.50)

3.3.2 Physical Quantities of Interest

3.3.2.1 Skin Friction Coefficient

The dimentional form of coefficient of skin friction is given as:

Cfx =
−2(τw)y=0

ρu2w(x)
. (3.51)

In order to obtain the dimentionless form of Cfx, the following calculations will

be helpful:

τw = −µ

[
∂u

∂y
+

γ√
2

(
∂u

∂y

)2
]
y=0

. (3.52)

From (3.6),

⇒ ∂u

∂y
= (axf ′′(η))

√
a

ν
.
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By using the above derivative in (3.52), we get

τw = −µ

[
(axf ′′(η))

√
a

ν
+

γ√
2

(
(axf ′′(η))

√
a

ν

)2
]
η=0

.

By using the value of uw(x) and τw in (3.51), we get

Cfx =
−2

ρ(ax)2

[
− µ

[
a

3
2x

ν
1
2

f ′′(η) +
γ√
2

(
a3x2

ν
f ′′

2
(η)

)]]
η=0

=
2µ

ρa2x2

[
a

3
2x

ν
1
2

f ′′(η) +
γ√
2

(
a3x2

ν
f ′′

2
(η)

)]
η=0

Since µ
ρ

= ν, therefore

Cfx =
2ν

a2x2

[
a

3
2x

ν
1
2

f ′′(η) +
γ√
2

(
a3x2

ν
f ′′

2
(η)

)]
η=0

=
2ν

a2x2
.
a

3
2x

ν
1
2

[
f ′′(η) +

γ√
2

( a3x2

ν

a
3
2 x

ν
1
2

f ′′
2
(η)

)]
η=0

=
2(
a
1
2 x

ν
1
2

)[f ′′(η) +
1

2

(√
2a3

ν
γx

)
f ′′

2
(η)

]
η=0

=
2

(Rex)
1
2

[
f ′′(η) +

1

2
Wef ′′

2
(η)

]
η=0

.

Hence, the dimentionless form of coefficient of skin friction is

⇒ Cfx(Rex)
1
2 = 2f ′′(0) +Wef ′′

2
(0), (3.53)

where Re represents the Reynolds number defined as Re =
√

a
ν
x.

3.3.2.2 Nusselt Number

The dimentional form of the local Nusselt numberois defined as the following

Nux =
xqw

k(Tw − T∞)
, (3.54)
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where qw is formulated as

qw = −
(
k +

16T 3
∞σ
∗

3k∗

)(
∂T

∂y

)
y=0

.

= −
(
k +

16T 3
∞σ
∗

3k∗

)(
Ax.

√
a

ν
θ′(η)

)
η=0

.

By using the above qw in (3.54), we get

Nux =

x
[
−
(
k + 16T 3

∞σ
∗

3k∗

)(
Ax.
√

a
ν
θ′(η)

)
η=0

]
k(Tw − T∞)

=

xk
[
−
(

1 + 16T 3
∞σ
∗

3k∗k

)(
Ax
√

a
ν
θ′(η)

)
η=0

]
k(Ax−Bx)

⇒ Nux(Rex)
−1
2 =

−
(

1 + 16T 3
∞σ
∗

3k∗k

)
(Rex)

1
2

(
θ′(η)

)
η=0

(1− B
A

)
.

Hence, the dimentionless form of the local Nesselt number will be

Nux(Rex)
− 1

2 =
θ′(0) + 4

3
Rd θ′(0)

(N2 − 1)
, (3.55)

where

Rd =
4T 3
∞σ
∗

k∗k
, N2 =

B

A
, (Rex)

1
2 =

√
a

ν
x.

3.3.2.3 Sherwood Number

The dimentional form of Sherwood numberois defined as following:

Shx =
xqm

DB(Cw − C∞)
, (3.56)

where

qm = −DB

(
∂C

∂y

)
y=0

= −DB

(
Dx

√
a

ν
φ′(0)

)
.
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By using the above qm in (3.56), we get

Shx =

x
[
−DB

(
Dx
√

a
ν
φ′(0)

)]
DB(Cw − C∞)

=

−x
(
Dx
√

a
ν
φ′(0)

)
(Dx− Ex)

=
−(Rex)

1
2φ′(0)

(1− E
D

)
.

⇒ Shx(Rex)
− 1

2 =
−φ′(0)

(1− E
D

)
.

Hence, the dimentionless form of the Sherwood number will be

Shx(Rex)
− 1

2 =
−φ′(0)

(1−N1)
, (3.57)

where

N1 =
E

D
, (Rex)

1
2 =

√
a

ν
x.

From (3.53), (3.55) and (3.57), the expression for the dimentionless form of the

skin friction coefficient, Nusselt Number and Sherwood Number are given below,

Cfx(Re
1
2
x ) = 2f ′′(0) +Wef ′′

2
(0),

Nux(Rex)
−1
2 =

θ′(0) + 4
3
Rd θ′(0)

(N2 − 1)
,

Shx(Rex)
− 1

2 =
−φ′(0)

(1−N1)
.


(3.58)

3.3.3 Entropy Generation

In order to obtain the dimentionless form of (3.11), the following calculations will

be helpful:

From (3.28),

(
∂T

∂y

)2

= (Tw − T0)2(
a

ν
)θ′

2
(η).
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From (3.6),

(
∂C

∂y

)2

= (Cw − C0)
2

(
a

ν

)
φ′

2
(η)

⇒
(
∂u

∂y

)2

= a2x2
(
a

ν

)
f ′′

2
(η)

⇒
(
∂u

∂y

)3

= a3x3.

(
a

ν

) 3
2

f ′′
3
(η).

From (3.7) and (3.37),

B2
0 =

Mρa

σ
, T = T∞

(
θ(η)

N2(N3 + 1)
+ 1

)
.

Hence (3.11) gets the following form:

SG =
k

T 2
∞

[
(Tw − T0)2

a

ν
θ′

2
+

16σ∗

3kk∗

(
T∞

(
θ

N2(N3 + 1)
+ 1

))3

(
(Tw − T0)2

a

ν
θ′

2

)]
+
RDA

C∞

(
(Cw − C0)

2 a

ν
φ′

2

)
+

σ

T∞

(
Mρa

σ

)(
axf ′

)2

+
RDA

T∞

(
(Cw − C0)

√
a

ν
φ′
)(

(Tw − T0)
√
a

ν
θ′
)

+
µ0

T∞

[
a2x2

(
a

ν

)
f ′′

2
+ γ

(
a3x3.

(
a

ν

) 3
2

f ′′
3

)]
.

=
k

T 2
∞

(Tw − T0)2
a

ν

[
1 +

4

3
Rd

(
θ

N2(N3 + 1)
+ 1

)3
]
θ′

2
+
Mρa

T∞
a2x2f ′

2

+
RDA

C∞

(
(Cw − C0)

2 a

ν
φ′

2

)
+
RDA

T∞

(
(Cw − C0)(Tw − T0)

a

ν
θ′φ′

+
µ0

T∞

[
a2x2

(
a

ν

)
f ′′

2
+ γ

(
a3x3

(
a

ν

) 3
2

f ′′
3

)]
.

⇒ T∞ν

k(Tw − T0)a
SG =

(Tw − T0)
T∞

[
1 +

4

3
Rd

(
θ

N2(N3 + 1)
+ 1

)3
]
θ′

2

+
1

k(Tw−T0)a
T∞ν

RDA

C∞

(
(Cw − C0)

2 a

ν
φ′

2

)
+

1
k(Tw−T0)a

T∞ν

Mρa

T∞
a2x2f ′

2

+
1

k(Tw−T0)a
T∞ν

RDA

T∞

(
(Cw − C0)(Tw − T0)

a

ν
θ′φ′

+
1

k(Tw−T0)a
T∞ν

µ0

T∞

[
a2x2

(
a

ν

)
f ′′

2
+ γ

(
a3x3

(
a

ν

) 3
2

f ′′
3

)]
.
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After simplifying the above expression, we get the dimentionless form of the en-

tropy generation as follows.

NG(η) = β1

[
1 +

4

3
Rd

(
θ(η)

N2(N3 + 1)
+ 1

)3
]
θ′

2
(η) + L

β2
β1
φ′

2
(η) +MBrf ′

2
(η)

+ Lθ′(η)φ′(η) +Brf ′′
2
(η) +

BrWe√
2

f ′′
3
(η), (3.59)

where Br stands for Brinkman number, L for the diffusion parameter, NG(η)

describes the rate of entropy generation, β1 signifies the temperature difference

parameter, and β2 stands for the concentration difference. The following formula-

tions are used for the dimensionless parameters in (3.59):

NG =
T∞ν

k(Tw − T0)a
SG, β1 =

Tw − T0
T∞

, β2 =
Cw − C0

C∞
,

L =
RDA(Cw − C0)

k
, Br =

a2µ0x
2

k(Tw − T0)
.

 (3.60)

3.4 Solution Methodology

In order toosolve the ordinary differential equation (3.21), the shooting technique

has been used by consideringothe following notations.

f = S1, of ′ = S ′1 = S2, f ′′ = S ′′1 = S ′2 = S3, of ′′′ = S ′3.

By using the above mentioned notations, the momentum equation is converted

into the following system of first order ODEs.

S ′1 = S2, S1(0) = 0.

S ′2 = S3, S2(0) = 1.

S ′3 =
1

(1 +WeS3)

[
S2

2 − S1S3 +MS2 + λS2 − FrS2
2

]
, S3(0) = r.

The Runge-Kutta method of order four is used in order to solve the above initial

value problem. By taking into account the problems domain, which is [0, η∞],
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and choosing η∞ so that no discernible changes result from going beyond, one can

achieve an approximative numerical solution. The selection of missing condition

r is carried out in such a way that the following condition must hold:

S2(η∞, r) = 0.

In order to find the value of the missing condition r in a systematic way, the

Newton’s iterative method will be used. The method used the following itterative

scheme for finding the missing conditions.

r(n+1) = r(n) −

(
S2(η∞, r)

∂
∂r

(S2(η∞, r))

)(n)

.

Let us further introduce the new notations that will be helpful for finding the

numerical solution of ODEs.

∂S1

∂r
= S4,

∂S2

∂r
= S5,

∂S3

∂r
= S6.

The above mentioned notations will change the form of Newton’s itterative scheme

as follows.

r(n+1) = r(n) −

(
S2(η∞, r)

S5(η∞, r)

)(n)

.

Now, differentiating the system of three first order ordinary differential equations

w.r.t. to the missing condition r, we get another system of three first order ordinary

differential equations as follows.

S ′4 = S5, S4(0) = 0.

S ′5 = S6, S5(0) = 0.

S ′6 =
1

(1 +WeS3)2

[
(1 +WeS3)(2S2S5 − S1S3

− S3S4 +MS5 + λS5 − Fr(2S2S5))− (S2
2 − S1S3

+MS2 + λS2 − FrS2
2)(WeS6)

]
, S6(0) = 1.
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The stopping criteria for the Newtons itterative technique is given below:

| S2(η∞, r) |< ε,

where ε > 0 is an arbitrarily small positive number. The value of ε has been taken

as 10−9.

The ordinary differentional equations (3.36) and (3.45) are coupled in θ and φ.

For numerical solution of these coupled ODEs, we will use the shooting method

by assuming that the value of function f is known. For this, we utilize the following

notations.

θ(η) = W1, θ′(η) = W ′
1 = W2, θ′′(η) = W1

′′ = W2
′,

φ(η) = W3, φ′(η) = W ′
3 = W4, φ′′(η) = W3

′′ = W4
′.

F1 =
1[

1 + 4
3
Rd

(
1 + (A1W1)3 + 3(A1W1)2 + 3(A1W1)

)] ,
F2 = −Pr

[
fW2 − f ′W1 −N2f

′ +Nb

(
W2W4 +

Nt

Nb
W 2

2

)
+MEcf ′

2
+ Ecf ′′

2

+
WeEc√

2
f ′′

3

]
− 4

3
Rd

[
3(A1W1W2)

2 + 3A1W
2
2 + 6(A1W2)

2W1

]
,

F3 =

−4
3
Rd

[
A3

13W
2
1W5 + 6A2

1W1W5 + 3A1W5

]
(F1)2

,

F4 = −Pr

[
fW6 − f ′W5 +Nb

(
W2W8 +W4W6 +

Nt

Nb
2W2W6

)]

− 4

3
Rd

[
3A3

1(2W
2
1W2W6 + 2W 2

2W1W5)

+ 6A1W2W6 + 6A2
1(2W1W2W6 +W 2

2W5)

]
,

F5 =

−4
3
Rd

[
A3

13W
2
1W9 + 6A2

1W1W9 + 3A1W9

]
(F1)2

,
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F6 = −Pr

[
fW10 − f ′W9 +Nb

(
W2W12 +W4W10 +

Nt

Nb
2W2W10

)]

− 4

3
Rd

[
3A3

1(2W
2
1W2W10 + 2W 2

2W1W9) + 6A1W2W10

+ 6A2
1(2W1W2W10 +W 2

2W9)

]
.

As a result, the coupled ODEs (3.36) and (3.45) are converted into the following

system of 1st order ODEs.

W ′
1 = W2, W1(0) = 1−N2.

W ′
2 = F1F2, W2(0) = p.

W ′
3 = W4, W3(0) = 1−N1.

W ′
4 = LePr(W3f

′ +N1f
′ −W4f)

+ LePrKW3 − (Nt/Nb)(F1F2), W4(0) = q.

The Runge-Kutta method of order four is used in order to solve the above initial

value problem. The selection of the missing conditions p and q is carried out in

such a way that the following conditions must hold.

(W1(p, q))η∞ = 0, (W3(p, q))η∞ = 0.

In order to find the values of the missing conditions p and q in a systematic way,

the Newton’s itterative method will be used. The method used the following iter-

ative scheme for finding missing conditions.

 p

q

(n+1)

=

 p

q

(n)

−

( ∂W1(p,q)
∂p

∂W1(p,q)
∂q

∂W3(p,q)
∂p

∂W3(p,q)
∂q

−1  W1

W3

)(n)
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Let us further introduce the new notations that will be helpful for finding the

numerical solution of ODEs.

∂W1

∂p
= W5,

∂W2

∂p
= W6

∂W3

∂p
= W7

∂W4

∂p
= W8,

∂W1

∂q
= W9

∂W2

∂q
= W10

∂W3

∂q
= W11

∂W4

∂q
= W12.

The above mentioned notations will change the form of Newton’s iterative scheme

as follows.

 p

q

(n+1)

=

 p

q

(n)

−

( W5 W9

W7 W11

−1  W1

W3

)(n)

.

Now, differentiating the system of four first ODEs w.r.t. to the missing conditions

p and q respectively. We will get another system of eight first order ODEs as

follows.

W ′
5 = W6, W5(0) = 0.

W ′
6 = F1F4 + F3F2, W6(0) = 1.

W ′
7 = W8 W7(0) = 0.

W ′
8 = LePr(W7f

′ −W8f) + LePrKW7

− (Nt/Nb)(F1F4 + F3F2), W8(0) = 0.

W ′
9 = W10, W9(0) = 0.

W ′
10 = F1F6 + F5F2, W10(0) = 0.

W ′
11 = W12, W11(0) = 1.

W ′
12 = LePr(W11f

′ −W12f) + LePrKW11

− (Nt/Nb) ∗ (F1F6 + F5F2), W12(0) = 0.

The stoping criteria for shooting method is given below:

max{| W1(η∞) |, | W3(η∞) |} < ε,
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where ε > 0 is an arbitrarily small positive number. The value of ε has been taken

as 10−9.

3.5 Numerical Results and Discussion

In this section, the numerical results for momentum, energy, concentration Equa-

tion for the physical quantities for non-Darcian MHD Williamson nanofluid have

been discussed through tables and graphs. The numercical data that has been

shown through tables and graphs is actually produced by varying the influence of

different physical quantities used in the ODEs. The dimentionless factors that have

direct effect on velocity, conentration and temperature of nanofluid flowing over

the sheet are Prandtl number (Pr), Eckert number (Ec), magnetic parameter (M),

Solutal stratification parameter (N1), Brownian motion parameter (Nb), inertial

coefficient (Fr), Lewis number (Le), thermophoresis parameter (Nt), Weissenberg

number (We), thermal radiation parameter (Rd), chemical reaction parameter

(k) and some temperature ratios N2 and N3. At the end of this section, the

phenomenon of entropy generation corresponding to (3.59) is explained through

graphs due to the fluctuation of numerous dimentionless parameters.

3.5.1 Numerical Data for Skin Friction Coefficient

Table 3.1 shows the impact of variation of different dimentionless parameters on the

skin friction coefficient Cf (Rex)
1
2 . The numerical results for skin friction coefficient

presented in the following table have been obtained by using shooting technique

in the MATLAB software. The table shows that due to an increment in the value

of the magnetic parameter (M), porosity parameter (λ) and inertial coefficient

(Fr), the value of the skin friction coefficient decreases. Similarly, as the value

of Weissenberg number (We) increases, a decline in the value of skin friction

coefficient has been noted. Table 3.1 also contains an interval If where from an

initial guess for missing condition for the velocity profile can be choosen.



Non-Darcian MHD Williamson Nanofluid for the Entropy Analysis 50

Table 3.1: Results of Cf (Rex)
1
2 for various parameters

M We λ F r Cf (Rex)
1
2 If

0.3 0.3 0.2 0.1 -2.30701 [-1,4]

0.5 -2.43594 [0,4]

0.7 -2.55552 [-1,5]

0.9 -2.66702 [-1,6]

0.35 -2.26569 [-1,6]

0.40 -2.21929 [0,5]

0.45 -2.16399 [-1,7]

0.3 -2.37274 [-1,4]

0.4 -2.43594 [-1,4]

0.5 -2.49681 [-1,4]

0.2 -2.34984 [-1,5]

0.3 -2.39166 [-1,4]

0.4 -2.43251 [-2,4]

3.5.2 Numerical Data for Nusselt and Sherwood Numbers

The following table presents the influence of variation in different dimentionless

parameters on Nusselt and Sherwood numbers. Table 3.2 also contains the inter-

vals Iθ and Iφ for the missing condistions, where from we can choose the missing

conditions easily and get a convergent numerical solution.
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Table 3.2: Results of Nu(Rex)−
1
2 and Sh(Rex)−

1
2

when N1 = 0.8, N2 = 0.8, N3 = 1.0, k = 0.1, Le = 1.0, We = 0.3.

Ec M Nt P r Rd Nu(Rex)
− 1

2 Sh(Rex)
− 1

2   Iθ Iφ

0.4 0.3 0.5 0.3 0.3 0.78027 0.80627 [-0.2, 0.3] [-0.3, 0.3]

0.5 0.70038 0.85922 [-0.3, 0.3] [-0.2, 0.5]

0.6 0.62047 0.91218 [-0.3, 0.3] [-0.3, 0.4]

0.7 0.54056 0.96516 [-0.3, 0.3] [-0.3, 0.4]

0.4 0.73048 0.81115 [-0.2, 0.3] [-0.3, 0.3]

0.5 0.68383 0.81616 [-0.2, 0.3] [-0.3, 0.3]

0.6 0.63999 0.82125 [-0.2, 0.3] [-0.2, 0.4]

0.6 0.77966 0.73094 [-0.2, 0.3] [-0.2, 0.3]

0.7 0.77904 0.65577 [-0.2, 0.3] [-0.3, 0.3]

0.8 0.77842 0.58075 [-0.3, 0.3] [-0.3, 0.3]

0.4 0.96678 1.01683 [-0.4, 0.3] [-0.4, 0.4]

0.5 1.14242 1.22301 [-0.4, 0.3] [-0.4, 0.4]

0.6 1.30690 1.42565 [-0.4, 0.3] [-0.4, 0.4]

0.4 0.78352 0.84690 [-0.3, 0.2] [-0.4, 0.4]

0.5 0.78872 0.87998 [-0.2, 0.2] [-0.4, 0.4]

0.6 0.79538 0.90742 [-0.2, 0.2] [-0.4, 0.5]

The following points elaborate the key findings from the Table 3.2.

• An increment in the value of the Eckert number results a decrement in

Nusselt number but an increment in the Sherwood number.

• Enhancing the value of the magneticoparameter, theoNusselt number de-

creases but the Sherwood number increases though slowly.

• An increment in the value of the Prandtl number results an increment in

both Nusselt and Sherwood numbers.
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• An increment in the value of the Nusselt numberoand Sherwood numberohas

been observed against the increase in the value of thermal radiation param-

eter.

• Due to an increase in the value of the thermophoeresis parameter, the Nus-

selt number decreases slowly whereas the value of the Sherwood number

decreases rapidly.

3.5.3 Velocity Profile

An increment in the value of the magnetic parameter results a decline in the

velocity profile and this phenomenon can be visulized from Figure 3.2. As the

parameter M physically induces a resistive force in the conduction fluid that’s

why in Figure 3.2, a drop in the fluid velocity is seen as a result of this produced

resistive force. Similarly, as the value of Weissenberg number increases, a decline

in the velocity profile is notable and this can be seen through Figure 3.3. The

Weissenberg number, which describes the relationship between the relaxation time

and the time scale of fluid flow, states that as We increases, the relaxation period

lengthens, allowing for greater flow resistance. As a result, the thickness of the

associated boundary layer grows, causing the fluid’s velocity to decline. Figure 3.4

depicts that due to an increasing value of the inertial coefficient, the velcoity profile

decreases and similar phenomenon can be seen for porosity parameter through

Figure 3.5.
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Figure 3.2: Effectoof M on f ′(η)

Figure 3.3: Effectoof We on f ′(η)
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Figure 3.4: Effect of Fr on f ′(η)

Figure 3.5: Effect of λ on f ′(η)
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3.5.4 Temperature Profile

The following key observations have been recorded on the basis of the graphs of

temperature profiles plotted against different dimentionless parameters belonging.

• The temperature distribution rises by a minor increase in the magnetic pa-

rameter. Physically, a resistive force is created in the fluid’s direction of flow,

and this force contributes to the rise in the temperature profile (See Figure

3.6).

• The temperature profile exhibits an increasing behaviour when the Brownian

motion parameter rises. In general, a rise in Nb causes fluid particle mo-

tion to increase dramatically, which increases the kinetic energy of the fluid

particles and raises the temperature distribution as a result (See Figure 3.7).

• An increasing behaviour in the temperature profile is seen as the ther-

mophoresis parameter increases. Physically, as Nt increases, the nanoparti-

cles are attracted from hotter to less heated regions, raising the temperature

profile of the nanofluid as a whole ( See Figure 3.8).

• As the Prandtl number rises, the temperature profile exhibits an abrupt

declining behaviour. Since Pr may be expressed as a ratio of the density to

thermal diffusivity, raising the value of Pr indicates, the fluid’s density rises

while the thermal diffusivity is falling, which lowers the temperature (See

Figure 3.9).

• The temperatureoprofile increases as theovalue of the porosity parameter

increases (See Figure 3.10).

• The temperatureoprofile decreases as the valueoof the temperature ratio in-

creases (See Figure 3.11).

• As the value of the thermal radiation parameter increases, the temperature

profile rises. In general, when Rd values rise, more heat is transferred to

the fluid, which causes an increase in the temperature distribution and the

thickness of the thermal boundary layer (See Figure 3.12).
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3.5.5 Concentration Profile

On the basis of the graphs of the concentration profiles plotted against solutal

stratification and chemical reaction parameter, the following significant conclu-

sions have been noted.

• The concentration profile decreases as the value of the solutal stratification

parameter increases (See Figure 3.13)

• When the chemical reaction parameter increases, the concentration profile

behaves in a decreasing manner (See Figure 3.14).

Figure 3.6: Effect of M on θ(η)
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Figure 3.7: Effect of Nb on θ(η)

Figure 3.8: Effect of Nt on θ(η)
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Figure 3.9: Effect of Pr on θ(η)

Figure 3.10: Effect of λ on θ(η)
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Figure 3.11: Effect of N3 on θ(η)

Figure 3.12: Effect of Rd on θ(η)
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Figure 3.13: Effect of N1 on θ(η)

Figure 3.14: Effect of k on φ(η)
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3.5.6 Entropy Generation

Entropy is the system’s inability to completely utilize the energy at hand. It is

also considered to be a measure of chaos. The progressive impact of the magnetic

parameter on NG is shown in Figure 3.15. It can be seen that entropy is produced

in proportion to the magnetic field strength. Figure 3.16 discusses the rate of

entropy generation in relation to the Weissenberg number. An increase in the rate

of heat transmission is what causes the appearance of entropy development at the

microscopic level. Additional factors such as molecular vibration, spin movement,

kinetic energy, molecular friction, and internal displacement of molecules, can oc-

cur as a result of the motion of heat. These additional factors are what cause the

heat loss. The system becomes disordered as a result of these extra movements.

The Weissenberg number directly correlates with the relaxation time. As a result,

an increase in relaxation time causes fluid’s motion to become more difficult, hence

raising We. Hence the system’s generated abnormalities are diminished.

The impact of Brinkman number Br on the entropy generation NG can be seen

in Figure 3.17. The Brinkman number describes a reduction in the heat transfer

rate caused from molecular conduction to viscous heating. Near the sheet, it is

observed that the heat transfer caused by viscous effects is outweighed by the

quantity of heat released owing to the molecular conduction. The actual cause

of the increase in entropy generation and the related diseases is the realization

of a significant amount of heat between the layers of the non-Newtonian fluid.

The effects of the concentration difference parameter β2 on the entropy generation

are depicted in Figure 3.18. An increment in the temperature ratio N2, the rate

of entropy generation NG decreases, as seen in Figure 3.19. By increasing the

diffusion parameter L, the rate of entropy generation NG increases, as seen in

Figure 3.20.
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Figure 3.15: Effect of M on NG(η)

Figure 3.16: Effect of We on NG(η)
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Figure 3.17: Effect of Br on NG(η)

Figure 3.18: Effect of β2 on NG(η)
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Figure 3.19: Effect of N2 on NG(η)

Figure 3.20: Effect of L on NG(η)



Chapter 4

Cattaneo-Christov Double

Diffusion Model for the Entropy

Analysis of a Non-Darcian MHD

Williamson Nanofluid

4.1 Introduction

This chapter includes an extention of [37] by including the Cattaneo-Christov dou-

ble diffusion model (CCDDM) in the energy and concentration equations. Using

the similarity transformations, the governing nonlinear PDEs are transformed into

a system of dimensionless ODEs. The numerical solution of ODEs is obtained by

using the shooting technique, which is a numerical technique. The final results for

significant parameters affecting f ′(η), θ(η), φ(η), and entropy optimization, are

displayed in tables and graphs.

65
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4.2 Mathematical Formulations

The influence of the Cattaneo-Christov double diffusion model for non-Darcian

MHD Williamson nanofluid on the rate of entropy production has been investi-

gated using a stratified sheet. The generation of entropy is examined using the

impact of thermal conductivity, Joule dissipation, and the Ohmic effects. The

sheet is expected to be stretching in the direction of the x-axis with a velocity

u = uw(x) = ax, where a is a positive constant. The physical flow model is shown

in Figure 3.1, where the y-axis is taken perpendicular to the stretching velocity

and the x-axis is taken towards the stretching velocity. The ambient temperature

is represented by T∞ = T0 + Bx, and the ambient concentration is represented

by C∞ = C0 + Ex. Temperature andoconcentration at the wall are denotedoby

Tw = T0 + Ax and Cw = C0 +Dx, respectively.

4.2.1 The Governing PDEs

The system of PDEs that depicts the flow problem, is given below.

∂u

∂x
+
∂v

∂y
= 0, (4.1)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
+
√

2νγ
∂u

∂y

∂2u

∂y2
− σ

ρ
B0

2u− ν

k∗
u− CF√

k∗
u2, (4.2)

(ρCp)f

(
u
∂T

∂x
+ v

∂T

∂y

)
+ λ1

[(
u
∂u

∂x
+ v

∂u

∂y

)
∂T

∂x
+

(
u
∂v

∂x
+ v

∂v

∂y

)
∂T

∂y

+ u2
∂2T

∂x2
+ v2

∂2T

∂y2
+ 2uv

∂2T

∂x∂y

]
= k

∂2T

∂y2
+ (ρCp)S

[
DB

∂T

∂y

∂C

∂Y
+
DT

T∞
(
∂T

∂y
)2

]

+ σB0
2u2 + µ0

(
∂u

∂y

)2

+ µ0γ

(
∂u

∂y

)3

− ∂qr
∂y

, (4.3)

u
∂C

∂x
+ v

∂C

∂y
+ λ2

[(
u
∂u

∂x
+ v

∂u

∂y

)
∂C

∂x
+

(
u
∂v

∂x
+ v

∂v

∂y

)
∂C

∂y
+ u2

∂2C

∂x2

+ v2
∂2C

∂y2
+ 2uv

∂2T

∂x∂y

]
= DB

∂2C

∂y2
+
DT

T∞

∂2T

∂y2
− k1(C − C∞). (4.4)
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The boundary conditions corresponding to the flow pattern are given below.

u = Uw(x) = ax, o v = 0, C = Cw, o T = Tw at y = 0,

u→ 0, T → T∞, C → C∞ as y →∞.

 (4.5)

4.2.2 Similarity Transformations

The following similarity transformations will be used to convert the system of

nonlinear PDEs into a system of dimentionless ODEs.

u = axf ′(η), v = −
√
aνf(η),

η =

√
a

ν
y, θ(η) =

T − T∞
Tw − T∞

,

φ(η) =
C − C∞
Cw − C∞

,


(4.6)

where f , θ and φ are the velocity, temperature and concentration profiles. Fur-

thermore, T∞, C∞, Tw and Cw represent the ambient temperature, ambient con-

centration, wall temperature and concentration respectively.

4.2.3 Physical Quantitiesoof Interest

The dimentional form of the skin friction coefficient, Nusselt and Sherwood num-

bers are given below.

Cfx =
−2(τw)y=0

ρu2w(x)
,

Nux =
xqw

k(Tw − T∞)
,

Shx =
xqm

DB(Cw − C∞)
.


(4.7)
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4.2.4 Entropy Optimization

The rate of entropy generation EG for Cattaneo-Christov double diffusion model

has been discussed briefly in [55]. The dimentional form of EG is given below:

EG =
1

T 2
∞

[
k

(
∂T

∂y

)2

+
16σ∗T 3

3kk∗
k

(
∂T

∂y

)2
]

+
RDw

C∞

(
∂C

∂y

)2

+
σ

T∞
B2

0u
2RDw

C∞

(
∂C

∂y

)(
∂T

∂y

)
+

1

T∞

[
µ0

(
∂u

∂y

)2

+ µ0γ

(
∂u

∂y

)3

+ α1

(
u
∂u

∂y

∂2u

∂x∂y
+ v

∂u

∂y

∂2u

∂y2

)
+ 2α2

(
∂u

∂y

)4
]
. (4.8)

4.3 PDEs to ODEs Transformation

4.3.1 Transformation of the Governing PDEs

As in chapter 3, the conversion of (4.1) into the dimentionless form has been

discussed in detailed. So the continuity equation (4.1) can be seen satisfied under

the same circumstances,

∂u

∂x
+
∂v

∂y
= 0. (4.9)

Similarly, as the momentum equation (4.2) is what we have make detailed discus-

sion in chapter 3. So the dimentionaless form of (4.2) under the same conditions

can be reffered to (3.21), which is gievn below

f ′′′(η) = f ′
2
(η)−f(η)f ′′(η)−Wef ′′(η)f ′′′(η)+Mf ′(η)+λf ′(η)+Frf ′

2
(η). (4.10)

The following procedure will help us to understand the conversion of energy equa-

tion (4.3) into the dimentionless form. The findings which are given below have

been taken from chapter 3. Instead of doing whole calculations again and again,

we can directly utilize those calculations here in ongoing chapter without any

hesitation. From (3.25), (3.26), (3.30), (3.31), (3.32), (3.33) and (3.34), we can
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write

(ρCP )f

(
u
∂T

∂x
+ v

∂T

∂y

)
= (ρCP )f

(
Baxf ′(η) + aAxf ′(η)θ(η)− aAxf(η)θ′(η)

)
,

(4.11)

k
∂2T

∂y2
=
kaAx

ν
θ′′(η), (4.12)

(ρCP )S

[
DB

(
∂C

∂y
.
∂T

∂y

)
+
DT

T∞

(
∂T

∂y

)2
]

= Nb(ρCp)f

(
aAxθ′(η)φ′(η)

)
+Nt(ρCp)f

(
aAxθ′

2
(η)

)
, (4.13)

σB2
0u

2 = a3Mρx2f ′
2
(η), (4.14)

µ0

(
∂u

∂y

)2

=
µ0a

3x2

ν
f ′′

2
(η), (4.15)

µ0γ

(
∂u

∂y

)3

=
µ0γa

9
2x3

ν
3
2

f ′′
3
(η), (4.16)

− ∂qr
∂y

=
16σ∗

3k∗
aAxT 3

∞
ν

[(
1

N2(N3 + 1)

)3

θ3(η)θ′′(η) + θ′′(η)

+ 3

(
1

N2(N3 + 1)

)2

θ2(η)θ′′(η) + 3

(
1

N2(N3 + 1)

)
θ(η)θ′′(η)

+ 3

(
1

N2(N3 + 1)

)2

θ2(η)θ′
2
(η) + 3

(
1

N2(N3 + 1)

)
θ′

2
(η)

+ 6

(
1

N2(N3 + 1)

)2

θ(η)θ′
2
(η)

]
. (4.17)

From (4.6),

θ(η) =
T − T∞
Tw − T∞

,

⇒ T = T∞ + (Tw − T0)θ(η).

As we know that,

T∞ = T0 +Bx,

Tw = T0 + Ax.

∴ T = T0 +Bx+ (Ax)θ(η).
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⇒ ∂T

∂x
=

∂

∂x

(
T0 +Bx+ (Ax)θ(η)

)
= B + Aθ(η). (4.18)

From (3.14), we know that

u
∂u

∂x
+ v

∂u

∂y
= a2xf ′

2
(η)− a2xf(η)f ′′(η). (4.19)

⇒
(
u
∂u

∂x
+ v

∂u

∂y

)
∂T

∂x
= a2x

(
f ′

2
(η)− f(η)f ′′(η)

)(
B + Aθ(η)

)
. (4.20)

From (4.6),

∂v

∂x
= 0,

∂v

∂y
= −af ′(η),

u
∂v

∂x
= 0, v

∂v

∂y
= a

3
2
√
νf(η)f ′(η).

∴ u
∂v

∂x
+ v

∂v

∂y
= a

3
2
√
νf(η)f ′(η). (4.21)

∂T

∂y
= (Tw − T0)

√
a

ν
θ′(η). (4.22)(

u
∂v

∂x
+ v

∂v

∂y

)
∂T

∂y
= (Tw − T0)a2f(η)f ′(η)θ′(η). (4.23)

∂2T

∂x2
= 0.

u2
∂2T

∂x2
= 0. (4.24)

∂2T

∂y2
= (Tw − T0)

a

ν
θ′′(η).

v2
∂2T

∂y2
= v2(Tw − T0)

a

ν
θ′′(η) = (Tw − T0)a2f 2(η)θ′′(η). (4.25)

2uv
∂

∂x

(
∂T

∂y

)
= 2(axf ′(η))(−

√
aνf(η))

∂

∂x

(
(Tw − T0)

√
a

ν
θ′(η)

)
= 2(axf ′(η))(−

√
aνf(η))

(
A

√
a

ν
θ′(η)

)
.

⇒ 2uv
∂2T

∂x∂y
= −2a2Axf(η)f ′(η)θ′(η). (4.26)



Cattaneo-Christov Double Diffusion Model for the Entropy Analysis 71

By adding (4.20), (4.23), (4.24), (4.25) and (4.26), we get

[(
u
∂u

∂x
+ v

∂u

∂y

)
∂T

∂x
+

(
u
∂v

∂x
+ v

∂v

∂y

)
∂T

∂y
+ u2

∂2T

∂x2
+ v2

∂2T

∂y2

+ 2uv
∂2T

∂x∂y

]
=

[
a2x

(
f ′

2
(η)− f(η)f ′′(η)

)(
B + Aθ(η)

)

+ (Tw − T0)a2f(η)f ′(η)θ′(η) + Axa2f 2(η)θ′′(η)− 2a2Axf(η)f ′(η)θ′(η)

]
.

⇒ λ1

[(
u
∂u

∂x
+ v

∂u

∂y

)
∂T

∂x
+

(
u
∂v

∂x
+ v

∂v

∂y

)
∂T

∂y
+ u2

∂2T

∂x2
+ v2

∂2T

∂y2

+ 2uv
∂2T

∂x∂y

]
= λ1

[
a2Bxf ′

2
(η)− a2Bxf(η)f ′′(η) + a2Axf ′

2
(η)θ(η)

− a2Axf(η)f ′′(η)θ(η) + a2Axf 2(η)θ′′(η)− a2Axf(η)f ′(η)θ′(η)

]
. (4.27)

By utilizing (4.11)-(4.17) and (4.27) in (4.3), we get

(ρCP )f

(
Baxf ′(η) + aAxf ′(η)θ(η)− aAxf(η)θ′(η)

)
+ λ1

[
a2Bxf ′

2
(η)

− a2Bxf(η)f ′′(η) + a2Axf ′
2
(η)θ(η)− a2Axf(η)f ′′(η)θ(η)

+ a2Axf 2(η)θ′′(η)− a2Axf(η)f ′(η)θ′(η)

]
=
kaAx

ν
θ′′(η)

+Nb(ρCp)f

(
aAxθ′(η)φ′(η)

)
+Nt(ρCp)f

(
aAxθ′

2
(η)

)
+ a3Mρx2f ′

2
(η) +

µ0a
3x2

ν
f ′′

2
(η) +

µ0γa
9
2x3

ν
3
2

f ′′
3
(η)

+
16σ∗

3k∗
aAxT 3

∞
ν

[(
1

N2(N3 + 1)

)3

θ3(η)θ′′(η) + θ′′(η)

+ 3

(
1

N2(N3 + 1)

)2

θ2(η)θ′′(η) + 3

(
1

N2(N3 + 1)

)
θ(η)θ′′(η)

+ 3

(
1

N2(N3 + 1)

)2

θ2(η)θ′
2
(η) + 3

(
1

N2(N3 + 1)

)
θ′

2
(η)

+ 6

(
1

N2(N3 + 1)

)2

θ(η)θ′
2
(η)

]
.
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⇒ a2Axλ1

[
B

A
f ′

2
(η)− B

A
f(η)f ′′(η) + f ′

2
(η)θ(η)− f(η)f ′′(η)θ(η) + f 2(η)θ′′(η)

− f(η)f ′(η)θ′(η)

]
= aAx

[
k

ν
θ′′(η)− (ρCP )f

(
B

A
f ′(η) + f ′(η)θ(η)− f(η)θ′(η)

)
+Nb(ρCp)f

(
θ′(η)φ′(η)

)
+Nt(ρCp)f

(
θ′

2
(η)

)
+
a3Mρx2

aAx
f ′

2
(η)

+
µ0a

3x2

aAxν
f ′′

2
(η) +

µ0γa
7
2x3

Axν
3
2

f ′′
3
(η)

+
16σ∗

3k∗
T 3
∞
ν

[(
1

N2(N3 + 1)

)3

θ3(η)θ′′(η) + θ′′(η)

+ 3

(
1

N2(N3 + 1)

)2

θ2(η)θ′′(η) + 3

(
1

N2(N3 + 1)

)
θ(η)θ′′(η)

+ 3

(
1

N2(N3 + 1)

)2

θ2(η)θ′
2
(η)

+ 3

(
1

N2(N3 + 1)

)
θ′

2
(η) + 6

(
1

N2(N3 + 1)

)2

θ(η)θ′
2
(η)

]]
.

⇒ aλ1

[
N2f

′2(η)−N2f(η)f ′′(η) + f ′
2
(η)θ(η)− f(η)f ′′(η)θ(η) + f 2(η)θ′′(η)

− f(η)f ′(η)θ′(η)

]
=
k

ν

[
θ′′(η)− (ρCP )f

ν

k
N2f

′(η)− (ρCP )f
ν

k
f ′(η)θ(η)

+ (ρCP )f
ν

k
f(η)θ′(η) +Nb(ρCp)f

ν

k
θ′(η)φ′(η) +Nt(ρCp)f

ν

k
θ′

2
(η)

+
a3Mρx2

aAx

ν

k
f ′

2
(η) +

µ0a
2x2

Axk
f ′′

2
(η) +

µ0γa
7
2x3

Axν
1
2k

f ′′
3
(η)

+
4

3

4σ∗T 3
∞

k∗k

[(
1

N2(N3 + 1)

)3

θ3(η)θ′′(η) + θ′′(η)

+ 3

(
1

N2(N3 + 1)

)2

θ2(η)θ′′(η) + 3

(
1

N2(N3 + 1)

)
θ(η)θ′′(η)

+ 3

(
1

N2(N3 + 1)

)2

θ2(η)θ′
2
(η)

+ 3

(
1

N2(N3 + 1)

)
θ′

2
(η) + 6

(
1

N2(N3 + 1)

)2

θ(η)θ′
2
(η)

]]
.

⇒ νaλ1
k

[
N2f

′2(η)−N2f(η)f ′′(η) + f ′
2
(η)θ(η)− f(η)f ′′(η)θ(η) + f 2(η)θ′′(η)

− f(η)f ′(η)θ′(η)

]
= θ′′(η) + Pr

[
f(η)θ′(η)−N2f

′(η)− f ′(η)θ(η)
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+Nb

(
θ′(η)φ′(η) +

Nt

Nb
(θ′)(η))2

)
+MEcf ′

2
(η) + Ecf ′′

2
(η) +

WeEc√
2

f ′′
3
(η)

]
+

4

3
Rd

[
B3

1θ
3(η)θ′′(η) + θ′′(η) + 3B2

1θ
2(η)θ′′(η) + 3B1θ(η)θ′′(η)

+ 3B2
1θ

2(η)θ′
2
(η) + 3B1θ

′2(η) + 6B2
1θ(η)θ′

2
(η)

]
.

⇒
(

1− λtf 2(η) +
4

3
Rd

[
1 +B3

1θ
3(η) + 3B2

1θ
2(η) + 3B1θ(η)

])
θ′′(η)− λtN2f

′2(η)

+ λtN2f(η)f ′′(η)− λtf ′2(η)θ(η) + λtf(η)f ′′(η)θ(η) + λtf(η)f ′(η)θ′(η)

+ Pr

[
f(η)θ′(η)−N2f ′(η)− f ′(η)θ(η) +Nb

(
θ′(η)φ′(η) +

Nt

Nb
(θ′(η))2

)
+MEcf ′

2
(η) + Ecf ′′

2
(η) +

WeEc√
2

f ′′
3
(η)

]
+

4

3
Rd

[
3B2

1θ
2(η)θ′

2
(η) + 3B1θ

′2(η) + 6B2
1θ(η)θ′

2
(η)

]
= 0.

⇒ θ′′(η) =
1(

1− λtf 2(η) + 4
3
Rd

[
1 +B3

1θ
3(η) + 3B2

1θ
2(η) + 3B1θ(η)

])[λtN2f
′2

− λtN2f(η)f ′′(η) + λtf
′2(η)θ(η)− λtf(η)f ′′(η)θ(η)− λtf(η)f ′(η)θ′(η)

− Pr
[
f(η)θ′(η)−N2f

′(η)− f ′θ +Nb

(
θ′(η)φ′(η) +

Nt

Nb
(θ′(η))2

)
+MEcf ′

2
(η) + Ecf ′′

2
(η) +

WeEc√
2

f ′′
3
(η)

]
− 4

3
Rd

[
+ 3B2

1θ
2(η)θ′

2
(η) + 3B1θ

′2(η) + 6B2
1θ(η)θ′

2
(η)

]]
. (4.28)

The most of the dimentionless parameters in (4.28) have been explained in (3.37)

and (3.60). As we have used Cattaneo-Cristtov heat flux model in (4.3) that’s

why the new parameter arises, which is gievn below:

λt =
νaλ1
k

,

where λt is Cattaneo-Christov temperature parameter. Similarly, the expression

for notation B1 is given below:

B1 =
1

N2(N3 + 1)
.
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Now, the conversion of (4.4) into dimentionless form will be discussed in detail.

As (4.4) is extended form of (3.4), so the conversions that are already done in

Chapter 3 can be used here in order to get the dimentionless form of (4.4). The

following process has been taken into account from (3.40) and (3.44) of

Chapter 3.

u
∂C

∂x
+ v

∂C

∂y
= aExf ′(η) + aDxf ′(η)φ(η)− aDxf(η))φ′(η). (4.29)

DB

(
∂2C

∂y2

)
+
DT

T∞

∂2T

∂y2
− k1(C − C∞) = DB

(
Dx.

a

ν
φ′′(η)

)
+
DT

T∞

(
aAx

ν
θ′′(η)

)
− ak

(
Cw − C0

)
φ(η). (4.30)

From (4.6),

φ(η) =
C − C∞
Cw − C0

.

⇒ C = C∞ + (Cw − C0)φ(η).

As we know that

C∞ = C0 + Ex,

Cw = C0 +Dx,

∴ C = (C0 + Ex) + (Dx)φ(η).

⇒ ∂C

∂x
=

∂

∂x

(
(C0 + Ex) + (Dx)θ(η)

)
= E +Dφ(η). (4.31)

From (3.14),

u
∂u

∂x
+ v

∂u

∂y
= a2xf ′

2
(η)− a2xf(η)f ′′(η). (4.32)

⇒
(
u
∂u

∂x
+ v

∂u

∂y

)
∂C

∂x
= a2x

(
f ′

2
(η)− f(η)f ′′(η)

)(
E +Dφ(η)

)
. (4.33)

From (4.6),

∂v

∂x
= 0,

∂v

∂y
= −af ′(η),
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u
∂v

∂x
= 0, v

∂v

∂y
= a

3
2
√
νf(η)f ′(η).

∴ u
∂v

∂x
+ v

∂v

∂y
= a

3
2
√
νf(η)f ′(η). (4.34)

∂C

∂y
= (Cw − C0)

√
a

ν
φ′(η). (4.35)

⇒
(
u
∂v

∂x
+ v

∂v

∂y

)
∂C

∂y
= (Cw − C0)a

2f(η)f ′(η)φ′(η). (4.36)

∂2C

∂x2
= 0.

u2
∂2T

∂x2
= 0. (4.37)

⇒ ∂2C

∂y2
= (Cw − C0)

a

ν
φ′′(η).

⇒ v2
∂2C

∂y2
= v2(Cw − C0)

a

ν
φ′′(η).

= (Cw − C0)a
2f 2(η)φ′′(η). (4.38)

2uv
∂

∂x

(
∂C

∂y

)
= 2(axf ′(η))(−

√
aνf(η))

∂

∂x

(
(Cw − C0)

√
a

ν
φ′(η)

)
= 2(axf ′(η))(−

√
aνf(η))

(
D

√
a

ν
φ′(η)

)
= −2a2Dxf(η)f ′(η)φ′(η). (4.39)

By utilizing (4.33) and (4.36)-(4.39),

λ2

[(
u
∂u

∂x
+ v

∂u

∂y

)
∂C

∂x
+

(
u
∂v

∂x
+ v

∂v

∂y

)
∂C

∂y
+ u2

∂2C

∂x2
+ v2

∂2C

∂y2

+ 2uv
∂2C

∂x∂y

]
= λ2

[
a2x(f ′

2
(η)− f(η)f ′′(η)).(E +Dφ(η))

+Dxa2f(η)f ′(η)φ′(η)Dxa2f 2(η)φ′′(η)− 2a2Dxf(η)f ′(η)φ′(η)

]
.

= λ2

[
a2Exf ′

2
(η)− a2Exf(η)f ′′(η) + a2Dxf ′(η)

2
φ(η) + a2Dxff ′φ′

+ a2Dxf 2(η)φ′′(η)− 3a2Dxf(η)f ′(η)φ′(η)

]
. (4.40)
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By putting (4.29)-(4.30) and (4.40) in (4.4),

aExf ′(η) + aDxf ′(η)φ(η)− aDxf(η))φ′(η) + λ2

[
a2Exf ′

2
(η)

− a2Exf(η)f ′′(η) + a2Dxf ′(η)
2
φ(η) + a2Dxf(η)f ′(η)φ′(η)

+ a2Dxf 2(η)φ′′(η)− 3a2Dxf(η)f ′(η)φ′(η)

]
= DB

(
Dx

a

ν
φ′′(η)

)
+
DT

T∞

(
aAx

ν
θ′′(η)

)
− ak

(
Cw − C0φ(η)

)
.

⇒ DB

(
Dx.

a

ν
φ′′(η)

)
+
DT

T∞

(
aAx

ν
θ′′(η)

)
− ak

(
Cw − C0

)
φ(η)

− aExf ′(η)− aDxf ′(η)φ(η) + aDxf(η))φ′(η)− λ2

[
a2Exf ′

2
(η)

− a2Exf(η)f ′′(η) + a2Dxf ′(η)
2
φ(η) + a2Dxf(η)f ′(η)φ′(η) + a2Dxf 2φ′′

− 3a2Dxf(η)f ′(η)φ′(η)

]
= 0.

⇒ φ′′(η) +

DT

T∞

(
aAx
ν

)
DB.Dx

(
a
ν

)θ′′(η)− aDx

DB.Dx

(
a
ν

)f ′(η)φ(η)− aEx

DBDx

(
a
ν

)f ′(η)

+
aDx

DBDx

(
a
ν

)f(η)φ′(η)− ak(Dx)

DBDx

(
a
ν

)φ(η)− a2Dxλ2

DBDx

(
a
ν

)[E
D
f ′

2
(η)

− E

D
f(η)f ′′(η) + f ′(η)

2
φ(η) + f(η)f ′(η)φ′(η) + f 2(η)φ′′(η)

− 3f(η)f ′(η)φ′(η)

]
= 0.

⇒ φ′′(η) +
(ρCP )SDT .Ax

(ρCP )fνT∞
.

ν(ρCP )f
DBDx(ρCP )S

θ′′(η)− αν

αDB

f ′(η)φ(η)− αν

αDB

N1f ′

+
να

DBα
f(η)φ′(η)− ανk

αDB

φ(η)− aνλ2
DB

[
N1f

′2(η)−N1f(η)f ′′(η)

+ f ′(η)
2
φ(η) + f 2(η)φ′′(η)− 3f(η)f ′(η)φ′(η)

]
= 0.

⇒ φ′′(η) +
Nt

Nb
θ′′(η)− αν

αDB

(
f ′(η)φ(η) +N1f ′(η)− f(η)φ′(η)

)
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− ανk

αDB

φ(η)− λd

[
N1f

′2(η)−N1f(η)f ′′(η) + f ′
2
(η)φ(η)

+ f 2(η)φ′′(η)− 3f(η)f ′(η)φ′(η)

]
= 0.

⇒ (1− λdf 2(η))φ′′(η) = LePr

(
f ′(η)φ(η) +N1f

′(η)

+ f(η)φ′(η) + kφ(η)

)
− Nt

Nb
θ′′(η) + λdN1f

′2(η)− λdN1ff
′′

+ λdf
′2(η)φ(η)− 3λdf(η)f ′(η)φ′(η).

⇒ φ′′(η) =
1

(1− λdf 2(η))

[
LePr

(
f ′(η)φ(η) +N1f

′(η) + f(η)φ′(η)

+ kφ(η)

)
− Nt

Nb
θ′′(η) + λdN1f

′2(η)− λdN1f(η)f ′′(η)

+ λdf
′(η)

2
φ(η)− 3λdf(η)f ′(η)φ′(η)

]
. (4.41)

The most of the dimentionless parameters in (4.41) are already defined in (3.37)

and (3.60), except N1, which is given below,

N1 =
E

D
.

Here, a new parameter arsies due to the Cattaneo-Christov diffusion model, which

is named as Cattaneo-Christov concentration parameter and formulated as follow-

ing,

λd =
aνλ2
DB

.

The detailed discussion for the transformation of the boundary conditions (4.5)

into dimentionless form have been done in chapter 3. Instead of repeating those

calculations again and again, we can directly write those findings from (3.50) as

follow

f(η) = 0, f ′(η) = 1, φ(η) = 1−N1, θ(η) = 1−N2 at η = 0,

f ′(η)→ 0, φ(η)→ 0, θ(η)→ 0 as η →∞.

 (4.42)
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From (4.10), (4.28), (4.41) and (4.42), the dimentionless form of the governing

model is given below.

f ′′′ = f ′
2 − f(η)f ′′ −Wef ′′f ′′′ +Mf ′ + λf ′ + Frf ′

2
, (4.43)

θ′′ =
1

1− λtf 2 + 4
3
Rd

[
1 +B3

1θ
3 + 3B2

1θ
2 + 3B1θ

][λtN2f
′2

− λtN2f(η)f ′′ + λtf
′2θ − λtff ′′θ − λtff ′θ′ − Pr

[
fθ′ −N2f

′

− f ′θ +Nb

(
θ′φ′(η) +

Nt

Nb
(θ′)2

)
+MEcf ′

2
+ Ecf ′′

2

+
WeEc√

2
f ′′

3

]
− 4

3
Rd

[
+ 3B2

1θ
2θ′

2
+ 3B1θ

′2 + 6B2
1θθ
′2

]]
, (4.44)

φ′′ =
1

(1− λdf 2)

[
LePr

(
f ′φ+N1f

′ + fφ′ + kφ

)

− Nt

Nb
θ′′ + λdN1f

′2 − λdN1ff
′′ + λdf

′2φ− 3λdff
′φ′

]
. (4.45)

4.3.2 Entropy Optimization

The computations below will be useful in order to determine the dimensionless

form of (4.8). As we know that

T = T∞ + (Tw − T0)θ(η)

⇒ ∂T

∂y
= (Tw − T0)(

√
a

ν
)θ′(η)

⇒
(
∂T

∂y

)2

= (Tw − T0)2(
a

ν
)θ′

2
(η).

C = C∞ + (Cw − C0)φ(η)

⇒ ∂C

∂y
= (Cw − C0)

(√
a

ν

)
φ′(η)

⇒
(
∂C

∂y

)2

= (Cw − C0)
2

(
a

ν

)
φ′

2
(η).
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From (4.6),

⇒ ∂u

∂y
= ax(

√
a

ν
)f ′′(η). (4.46)

⇒
(
∂u

∂y

)2

= a2x2
(
a

ν

)
f ′′

2
(η).

⇒
(
∂u

∂y

)4

= a4x4
(
a2

ν2

)
f ′′

4
(η)

⇒ ∂2u

∂x∂y
= a(

√
a

ν
)f ′′(η).

∂2u

∂y2
= ax

a

ν
f ′′′(η)

u
∂u

∂y

∂2u

∂x∂y
= a3x2

a

ν
f ′(η)f ′′

2
(η).

v
∂u

∂y

∂2u

∂y2
= −a

4x2

ν
f(η)f ′′(η)f ′′′(η).

From (3.7) and (3.37),

B2
0 =

Mρa

σ
, T = T∞

(
θ(η)

N2(N3 + 1)
+ 1

)
.

By using the values in (4.8), we get

EG =
1

T 2
∞

[
k + k

16σ∗

3kk∗

(
T∞

(
θ

N2(N3 + 1)
+ 1

))3
]

(Tw − T0)2
a

ν
θ′

2

+
RDw

C∞

(
(Cw − C0)

2 a

ν
φ′

2

)
+

σ

T∞

(
Mρa

σ

)(
axf ′

)2

+
RDA

T∞

(
(Cw − C0)

√
a

ν
φ′
)(

(Tw − T0)
√
a

ν
θ′
)

+
1

T∞

[
µ0

(
a2x2.

a

ν
f ′′

2

)
+ µ0γ

(
a3x3

(
a

ν

) 3
2

f ′′
3

)
+ α1

(
a3x2

a

ν
f ′f ′′

2

− a4x2

ν
ff ′′f ′′′

)
+ 2α2

(
a4x4

(
a2

ν2

)
f ′′

4

)]
.
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=
k

T 2
∞

(Tw − T0)2
a

ν

[
1 +

4

3

4σ∗T 3
∞

kk∗

(
θ

N2(N3 + 1)
+ 1

)3
]
θ′

2

+
RDw

C∞

(
(Cw − C0)

2 a

ν
φ′

2

)
+
RDw

T∞
(Cw − C0)(Tw − T0)

a

ν
θ′φ′

+
µ0

T∞

(
a2x2

a

ν
f ′′

2

)
+
µ0γ

T∞

(
a3x3

(
a

ν

) 3
2

f ′′
3

)
+
Mρa

T∞
a2x2f ′

2

+
1

T∞

a4x2

ν
α1

(
f ′f ′′

2 − ff ′′f ′′′
)

+ 2
1

T∞

a6x4

ν2
α2f

′′4

]
.

T∞ν

k(Tw − T0)a
EG =

[
1 +

4

3

4σ∗T 3
∞

kk∗

(
θ

N2(N3 + 1)
+ 1

)3
]
θ′

2

+
RDw

C∞

(
(Cw − C0)

2 a

ν
φ′

2

)
+
RDw

T∞
(Cw − C0)(Tw − T0)

a

ν
θ′φ′

+
µ0

T∞

(
a2x2

a

ν
f ′′

2

)
+
µ0γ

T∞

(
a3x3

(
a

ν

) 3
2

f ′′
3

)
+
Mρa

T∞
a2x2f ′

2

+
1

T∞

a4x2

ν
α1

(
f ′f ′′

2 − ff ′′f ′′′
)

+ 2
1

T∞

a6x4

ν2
α2f

′′4

]
.

NG(η) = τ1

[
1 +

4

3
Rd

(
θ

N2(N3 + 1)
+ 1

)3
]
θ′

2
+ L

τ2
τ1
φ′

2
+ Lθ′φ′

+Brf ′′
2

+MBrf ′
2

+
2a5x4α2

k(Tw − T0)ν
f ′′

4
+
WeBr√

2
f ′′

3

)
+

a3x2α1

k(Tw − T0)

(
f ′f ′′

2 − ff ′′f ′′′
)
.

Hence, the dimentionless form of the entropy generation will be

NG(η) = τ1

[
1 +

4

3
Rd

(
θ(η)

N2(N3 + 1)
+ 1

)3
]
θ′

2
(η) + L

τ2
τ1
φ′

2
(η) + Lθ′(η)φ′(η)

+Brf ′′
2
(η) +MBrf ′

2
(η) +Xbf ′′

4
(η)

WeBr√
2

f ′′
3
(η)

+Xr

(
f ′(η)f ′′

2
(η)− f(η)f ′′(η)f ′′′(η)

)
. (4.47)
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The dimensionless parameters in (4.47) have been formulated as following:

NG(η) =
T∞ν

k(Tw − T0)a
EG, τ1 =

Tw − T0
T∞

,

L =
RDA(Cw − C0)

k
, τ2 =

Cw − C0

C∞
,

Br =
a2µ0x

2

k(Tw − T0)
, Xr =

a3x2α1

k(Tw − T0)
,

Xb =
2a5x4α2

k(Tw − T0)ν
.


(4.48)

4.4 Numerical Solution

In this segment, a discussion on the numerical solution of the ordinary differen-

tial equations (4.43), (4.44) and (4.45) subject to the boundary conditions (4.42)

has been presented thoroughly. For the numerical solution of the flow problem,

we used the well known shooting technique along with Runge-Kutta method of

order four. Furthermore, the tables and graphs for the numerical results corre-

sponding to the flow problem subject to boundary conditions have been generated

through MATLAB application. The procedure for the numerical solution of ordi-

nary differential equation (4.43) is already discussed in Chapter 3. The ordinary

differentional equations (4.44) and (4.45) are coupled in θ and φ. For the numeri-

cal solution of these coupled ODEs, we will use shooting method by assuming that

the function f is known. For this, we utilize the following notations:

θ(η) = V1, θ′(η) = V ′1 = V2, θ′′(η) = V1
′′ = V2

′,

φ(η) = V3, φ′(η) = V ′3 = V4, φ′′(η) = V3
′′ = V4

′,

D1 =
1[

1− λtf 2 + 4
3
Rd

(
1 + (B1V1)3 + 3(B1V1)2 + 3(B1V1)

)] ,
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D2 = λtN2f
′2 − λtN2ff

′′ + λtf
′2V1 − λtff ′′V1 − λtff ′V2 − Pr

[
fV2 − f ′V1

−N2f
′ +Nb

(
V2V4 +

Nt

Nb
V 2
2

)
+MEcf ′

2
+ Ecf ′′

2
+
WeEc√

2
f ′′

3

]

− 4

3
Rd

[
3(B1V1V2)

2 + 3B1V
2
2 + 6(B1V2)

2V1

]
,

D3 =

−4
3
Rd

[
B3

13V 2
1 V5 + 6B2

1V1V5 + 3B1V5

]
(D1)2

,

D4 = λtf
′2V5 − λtff ′′V5 − λtff ′V6 − Pr

[
fV6 − f ′V5 +Nb

(
V2V8

+ V4V6 +
Nt

Nb
2V2V6

)]
− 4

3
Rd

[
3B3

1(2V 2
1 V2V6 + 2V 2

2 V1V5)

+ 6B1V2V6 + 6B2
1(2V1V2V6 + V 2

2 V5

]
,

D5 =

−4
3
Rd

[
B3

13V 2
1 V9 + 6B2

1V1V9 + 3B1V9

]
(D1)2

,

D6 = λtf
′2V9 − λtff ′′V9 − λtff ′V10 − Pr

[
fV10 − f ′V9 +Nb

(
V2V12

+ V4V10 +
Nt

Nb
2V2V10

)]
− 4

3
Rd

[
3V 3

1 (2V 2
1 V2V10 + 2V 2

2 V1V9)

+ 6B1V2V10 + 6B2
1(2V1V2V10 + V 2

2 V9

]
.

As a result, the coupled ODEs (4.44) and (4.45) are converted into the following

system of 1st order ODEs.

V ′1 = V2, V1(0) = 1−N2

V ′2 = D1D2, V2(0) = c

V ′3 = V4, V3(0) = 1−N1
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V ′4 =
1

(1− λdf 2)

[
LePr(V3f

′ +N1f
′ − V4f) + LePrKV3

− (Nt/Nb)(D1D2) + λdN1f
′2 − λdN1ff

′′

+ λdV3f
′2 − λdff ′′V3 − λdff ′V4

]
, V4(0) = d.

The above initial value problem is solved by using Runge-Kutta method of or-

der four. One can arrive at an approximated numerical solution by considering

the problem’s domain, [0, η∞], and selecting η∞ such that there are no apparent

changes when going beyond η∞. The missing conditions c and d are choosen very

carefully, so that the following conditions must hold.

(V1(c, d))η∞ = 0, (V3(c, d))η∞ = 0.

The Newton’s iterative method is used to find the values of the missing conditons

c and d in a systematic manner.

 c

d

(n+1)

=

 c

d

(n)

−

{ ∂V1(c,d)
∂c

∂V1(c,d)
∂d

∂V3(c,d)
∂c

∂V3(c,d)
∂d

−1  V1

V3

}(n)

.

Furthermore, the following notations will be fruitful to apply the above iterative

formula

∂V1
∂c

= V5
∂V2
∂c

= V6
∂V3
∂c

= V7
∂V4
∂c

= V8,

∂V1
∂d

= V9
∂V2
∂d

= V10
∂V3
∂d

= V11
∂V4
∂d

= V12.

The Newton’s iterative scheme will then change its form after utilizing the above

mentioned notations as follow:

 c

d

(n+1)

=

 c

d

(n)

−

{ V5 V9

V7 V11

−1  V1

V3

}(n)

.



Cattaneo-Christov Double Diffusion Model for the Entropy Analysis 84

Now, we will get another system of eight 1st order ODEs after differentiaiting the

above system of four ODEs of 1st order w.r.t. to c and d

V ′5 = V6, V5(0) = 0

V ′6 = D1D4 +D3D2, V6(0) = 1

V ′7 = V8, V7(0) = 0

V ′8 =
1

(1− λdf 2)

[
LePr(V7f

′ − V8f) + LePrKV7

− (Nt/Nb)(D1D4

+D3D2) + λdV7f
′2 − λdff ′′V7 − λdff ′V8

]
, V8(0) = 0

V ′9 = V10, V9(0) = 0

V ′10 = D1D6 +D5D2, V10(0) = 0

V ′11 = V12, V11(0) = 1.

V ′12 =
1

(1− λdf 2)

[
LePr(V11f

′ − V12f) + LePrKV11

− (Nt/Nb)(D1D6 +D5D2)

+ λdV11f
′2 − λdff ′′V11 − λdff ′V12

]
, V12(0) = 0.

The following inequality is the stoping cretieria for the shooting method.

max{| V1(η∞) |, | V3(η∞) |} < ε,

where the value of ε has been choosen as 10−9.

4.5 Numercial Results and Discussion

The ongoing segment consists of the discussion related to the numerical solution

of the system of ODEs that governs the flow problem in the dimentionless form.
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With the aid of tables and graphs, the numerical data for the non-Darcian MHD

Williamson Nanofluid with Cattaneo-Christov double diffusion model has been

presented. This includes the temperature profile θ(η) and concentration profile

φ(η), as well as previously discussed physical parameters. It should also be re-

membered that the information in tables and graphs really represents the effects

of different non-dimensional parameters used in ODEs.

4.5.1 Numerical Results for Nusselt and Sherwood Num-

bers

The impact of various dimentionless parameters onoNusselt and Sherwoodonumbers

have been discussed in Table 4.1. In Table 4.1, the values of Nusselt and Sherwood

numbers corresponding to the variation in chemical reaction parameter, magnetic

parameter, Cattaneo-Christov temperature parameter, Cattaneo-Christov concen-

tration parameter, thermal radiation parameter and thermophoresis parameter are

provided.

The parameters which are kept fixed are solutal stratification parameter, Brown-

ian motion parameter, Lewis number, Weissenberg number and some temperature

ratios N2 and N3. In this Table, Iθ and Iφ are the intervals where from the missing

conditions of the energy and concentration equations can be chosen.
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Table 4.1: Results of Nu(Rex)−
1
2 and Sh(Rex)−

1
2

when N1 = 0.8, N2 = 0.8, N3 = 1.0, Pr = 0.7, Le = 1.0, We = 0.3.

k M      λt λd Rd     Nt        Nu(Rex)
− 1

2 Sh(Rex)
− 1

2        Iθ Iφ

0.1 0.3 0.1 0.1 0.3 0.5 1.70985 1.74825 [-0.5, 0.2] [-0.5, 0.3]

0.2 1.70945 1.77680 [-0.3, 0.1] [-0.4, 0.1]

0.3 1.70904 1.80501 [-0.4, 0.1] [-0.3, 0.2]

0.4 1.70865 1.83263 [-0.4, 0.1] [-0.5, 0.2]

0.4 1.60433 1.75192 [-0.5, 0.2] [-0.5, 0.3]

0.5 1.50437 1.75673 [-0.5, 0.2] [-0.5, 0.3]

0.6 1.40946 1.76246 [-0.5, 0.1] [-0.4, 0.3]

0.98 3.89998 0.51412 [-0.4,-0.1] [-0.4,-0.1]

0.96 3.85151 0.54140 [-0.5,-0.1] [-0.5,-0.2]

0.94 3.80296 0.56872 [-0.5,-0.1] [-0.5,-0.1]

0.98 1.66548 4.04724 [-0.4, 0.1] [-0.4, 0.2]

0.96 1.66638 3.99659 [-0.4, 0.1] [-0.4, 0.3]

0.94 1.66727 3.94585 [-0.4, 0.2] [-0.4, 0.2]

0.4 0.21654 0.36098 [-0.5, 0.2] [-0.4, 0.3]

0.5 0.20227 0.37353 [-0.5, 0.2] [-0.5, 0.3]

0.6 0.19032 0.38401 [-0.5, 0.2] [-0.4, 0.3]

0.6 1.70587 1.58473 [-0.4, 0.2] [-0.4, 0.4]

0.7 1.70191 1.42209 [-0.5, 0.1] [-0.5, 0.2]

0.8 1.69797 1.26035 [-0.3, 0.2] [-0.4, 0.3]

The following points express the theme of Table 4.1 more clearly.

• As the value of the chemical reaction parameter k increases, the Nusselt

number slowly decreases while the Sherwood number increases.

• The Sherwood number increases gradually whereas the Nusselt number falls

quickly as the magnetic parameter is increased.
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• A rise in the Cattaneo-Christov temperature parameter λt causes a rise in

Nusselt number whereas a decline in Sherwood number.

• When the Cattaneo-Christov concentration parameter λd increases, Nusselt

number slowly decreases and Sherwood number slightly increases.

• When compared to an increase in the value of the thermal radiation pa-

rameter, a decrease in the Nusselt number and an increase in the Sherwood

number have been observed.

• Due to an increase in the value of the thermophoresis parameter, a modest

decline in the Nusselt number and a sharp decline in the Sherwood number,

can be observed.

4.5.2 Temperature Profile

Here a thorough discussion on the impact of several dimensionless characteristics

on the temperature profile has been conducted. The following observations have

been recorded as key findings.

• A slight increase in the magnetic parameter results in an increase in the

temperature distribution, as seen in Figure 4.1. Physically, a resistive force

in the fluid’s direction of flow is produced, and this force causes an increase

in the temperature.

• As the value of the porosity parameter λ rises, so does the temperature

profile (See Figure 4.2).

• A correlation between the temperature profile and inertial coefficient is

shown in Figure 4.3. For a greater inertial coefficient, a growing thermal

boundary layer is shown.

• A reduction in the temperature prfile is seen as a result of rising values of

the Cattaneo-Christov temperature parameter λt (See Figure 4.4).
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• As the Prandtl number increases, it is found that the temperature field is

droped. This is because an increase in Pr causes a decrease in the rate of

heat transmission (See Figure 4.5).

• The temperature profile exhibits an increasing behaviour when the ther-

mophoresis parameter rises. Physically, as Nt rises, the nanoparticles are

moved from hotter to cooler areas, increasing the temperature distribution

across the nanofluid (See Figure 4.6).

• When the Brownian motion parameter increases, the temperature profile

displays an increasing behaviour. In general, a rise in Nb leads to a sharp

increase in the fluids motion, which enhances the fluid particles, kinetic

energy and, consequently, the temperature distribution (See Figure 4.7).

• The temperature distribution rises as the Eckert number increases. The

Eckert number describes the ratio of the kinetic energy to change in enthalpy

of the flow. Physically, the kinetic energy of the fluid particles rises as Ec

acquires larger values. The temperature of the fluid is increased as a result,

increasing the thickness of the thermal boundary layer (See Figure 4.8).

• Figure 4.9 shows that the temperature profile rises as the value of the solutal

stratification parameter rises.

• An increment in the value of temperature ratio, results a quick decrement

in temperature profile (See Figure 4.10).

• The thermal radiation parameter increases together with the temperature

profile. The general rule is that as Rd values grow, more heat is delivered

to the fluid, increasing the temperature distribution and the thickness of the

thermal boundary layer (See Figure 4.11).

• A reduction in the concentration distribution is observed as λd increases in

value (See Figure 4.18).
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Figure 4.1: Influence of M on θ(η)

Figure 4.2: Influence of λ on θ(η)
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Figure 4.3: Impact of Fr on θ(η)

Figure 4.4: Influence of λt on θ(η)
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Figure 4.5: Influence of Pr on θ(η)

Figure 4.6: Influence of Nt on θ(η)
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Figure 4.7: Influence of Nb on θ(η)

Figure 4.8: Influence of Ec on θ(η)
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Figure 4.9: Influence of N1 on θ(η)

Figure 4.10: Influence of N2 on θ(η)
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Figure 4.11: Influence of Rd on θ(η)

4.5.3 Concentration Profile

The influence of various dimensionless parameters on the concentration profile on

a stratified sheet is briefly discussed in this segment. From the graphs, plotted

against the variations in distinct dimentionless parameters, the results correspond-

ing to the concentration profile are lined up as follow:

• As the value of the solutal stratification parameter rises, the concentration

profile declines (See Figure 4.12).

• As the value of the Lewis number rises, so does the concentration profile

(See Figure 4.13).

• Rising Prandtl numbers cause a drop in the concentration profile (See Figure

4.14).
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• As the thermophoresis parameter values rise, the concentration profile be-

haves in decreasing order (See Figure 4.15).

• As the values of the Brownian motion parameters increase, the concentration

profile decreases (See Figure 4.16).

• The concentration profile acts in a decreasing fashion near the surfase, when

the chemical reaction parameter increases, but in a rising manner for away

from the surface (See Figure 4.17).

• A reduction in the concentration distribution is observed as λd, the Cattaneo-

Christov concentration parameter, increases in value (See Figure 4.18).

Figure 4.12: Influence of N1 on φ(η)



Cattaneo-Christov Double Diffusion Model for the Entropy Analysis 96

Figure 4.13: Influence of Le on φ(η)

Figure 4.14: Influence of Pr on φ(η)
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Figure 4.15: Influence of Nt on φ(η)

Figure 4.16: Influence of Nb on φ(η)
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Figure 4.17: Influence of k on φ(η)

Figure 4.18: Influence of λd on φ(η)
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4.5.4 Entropy Generation

This segment discusses the impact of variation of various non-dimentional param-

eters on the entropy generation. The following points illsutrate the implications

that have been shown through graphs.

• In Figure 4.19, the effect of the Brinkman number on the entropy generation

is depicted. According to the definition of Brinkman number, molecular ab-

sorption leads to viscous heating, which slows down the rate of heat transfer.

The realization of a sizable quantity of heat between the layers of the non-

Newtonian fluid is the real cause of an increase in the entropy generation.

• Figure 4.20 illustrates the gradual effect of the magnetic parameter on the

entropy generation. Entropy produced in the system is directly proportional

to the strength of the magnetic field away from the surface, whereas slightly

decreasing pattern near the surface.

• The rate of entropy generation with respect to the Weissenberg number is

discussed in Figure 4.21. As the Wesseinburg number rises, the entropy

generation rate increases away from surface and then shows a decreasing

behaviour near the surface.

• The entropy generation displays an increasing pattern when the value of the

temperature difference parameters increases. This phenomenon can bee seen

through Figures 4.22 and 4.23.

• The entropy production displays an increasing pattern as the diffusion pa-

rameter’s value increases, as can be seen from Figure 4.24.

• Entropy generation is observed to have increased in accordance with the

Cattaneo-Christov double diffusion entropy parameters. This can be seen

through Figures 4.25 and 4.26.
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Figure 4.19: Influence of Br on NG(η)

Figure 4.20: Influence of M on NG(η)
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Figure 4.21: Influence of We on NG(η)

Figure 4.22: Influence of τ1 on NG(η)
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Figure 4.23: Influence of τ2 on NG(η)

Figure 4.24: Influence of L on NG(η)
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Figure 4.25: Influence of Xr on NG(η)

Figure 4.26: Influence of Xb on NG(η)



Chapter 5

Conclusion

This thesis reviews and extends the work of [37], taking into account the effect of

Cattaneo-Christov double diffusion model. To begin, momentum, energy, and con-

centration equations are transformed into ODEs using similarity transformations.

The shooting technique was used to get the numerical solution for the modified

ODEs. The resultsohave been provided for velocity, temperature, concentration

profiles and forophysical parameters in the form of tables and graphs using various

values of the regulating physical factors. The following are the accomplishments

of the current study:

• The velocity profile drops as the value of We rises whereas the temperature

profile rises.

• As the magnetic parameter M increases, the velocity profile decreases while

the temperature profile rises.

• The velocity profile is reduced as the porosity parameter λ rises, whereas the

temperature profile is enhanced.

• As the inertial coefficient Fr increases, the velocity profile decreases but the

temperature profile behaves the other way.

• The temperature profile falls as the temperature ratio N2 rises.

104
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• The concentration profile falls as λd, the Cattaneo-Christov diffusion param-

eter increases.

• The temperature profile drops as the Cattaneo-Christov temperature param-

eter λt rises.

• The Nusselt number decreases as the value of the thermal radiation param-

eter Rd climbs whereas the Sherwood number rises.

• Because of the climbing values of the thermophoresis parameter Nt, the

Nusselt and Sherwood numbers also decrease.

• The growing values of the Prandtl number Pr cause a decrement in the

temperature and concentration distributions.

• The temperature profile rises while the concentration profile falls due to the

rising values of the Brownian motion parameter Nb.

• The concentration distribution drops as the Lewis number Le increases in

value.

• When the Cattaneo-Christov temperature parameter λt is decreased, the

Nusselt number decreases and the Sherwood number rises.

• The Nusselt number increases as the Cattaneo-Christov concentration pa-

rameter λd is decreased whereas the Sherwood number is droped.

• The temperature profile increases as the Eckert number Ec increases in value.

• The values of the Nusselt number Nu(Rex)
− 1

2 are increased when the solu-

tal stratification parameter N1 ascends whereas the values of the Sherwood

number Sh(Rex)
− 1

2 are dropped.

• The entropy generation rate increases due to the increasing values of the

Brinkman number Br.

• The increasing values of the magnetic parameter M lead to a rise in the

entropy generation rate.
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• The rate of entropy generation increases as the values of the Weissenburg

number We rise.

• The increasing values of the temperature difference parameter τ1 lead to an

increase in the entropy generation rate.

• As the value of the concentration difference τ2 increases, the rate of entropy

creation increases.

• The increasing values of the diffusion parameter L lead to a rise in the

entropy generation rate.

• The entropy generation rate increases when the Cattaneo-Christov double

diffusion parameters rise in value.
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